K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

a)

2009-|x-2009|=x

=> 2009-x=|x-2009|

=> 2009-x=|2009-x|

=> 2009-x=2009-x

vậy với mọi giá trị x thuộc R thoả mãn yêu cầu đề bài

b)

(2x-1)2008+(y-2/5)2008 +|x+y+z|=0

ta có: (2x-1)2008 luôn lớn hơn hoặc  bằng 0

(y-2/5)2008  luôn lớn hơn hoặc bằng 0

|x+y+z| luôn lớn hơn hoặc bằng 0

dấu "=" xảy ra khi 

2x-1=y-2/5=x+y+z=0

+2x-1=0=> 2x=1=> x=1/2

+y-2/5=0=> y=2/5

+x+y+z=0=> 1/2+2/5+z=0

=> z=-9/10

8 tháng 5 2017

a, =\(6\cdot\left(-2\right)^3-\left(-2\right)^{10}+4\cdot\left(-2\right)^3+\left(-2\right)^{10}-8\cdot\left(-2\right)^3+\left(-2\right)\)

= \(\left(-48\right)-1024+\left(-32\right)+1024-\left(-64\right)+\left(-2\right)\)

= \(\left(-18\right)\)

b, = \(4\cdot1^6\cdot\left(-1\right)^3-3\cdot1^6\cdot\left(-1\right)^3+2\cdot1^2\cdot\left(-1\right)^2-1^6\cdot\left(-1\right)^3-1^2\cdot\left(-1\right)^2+\left(-1\right)\)

= \(\left(-4\right)-\left(-3\right)+2-\left(-1\right)-1+\left(-1\right)\)

= 0

8 tháng 5 2017

cám ơn

24 tháng 3 2023

{xI+2yI=5xI+yI−3=0

{xI+2yI=5xI+yI−3=0

24 tháng 3 2023

{xI+2yI=5xI+yI−3=0

6 tháng 12 2017

Ta có: \(\widehat{A}=\dfrac{2}{5}\widehat{B}=\dfrac{1}{4}\widehat{C}\Rightarrow\widehat{\dfrac{A}{1}}=\widehat{\dfrac{B}{\dfrac{1}{\dfrac{2}{5}}}}=\widehat{\dfrac{C}{\dfrac{1}{\dfrac{1}{4}}}}\)

\(\Rightarrow\widehat{\dfrac{A}{1}}=\widehat{\dfrac{B}{\dfrac{5}{2}}}=\widehat{\dfrac{C}{4}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\widehat{\dfrac{A}{1}}=\dfrac{\widehat{B}}{\dfrac{5}{2}}=\widehat{\dfrac{C}{4}}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{1+\dfrac{5}{2}+4}=\dfrac{180}{9}=20\)

\(\Rightarrow\widehat{A}=20^o\)

\(\widehat{\dfrac{B}{\dfrac{5}{2}}}=20\Rightarrow\widehat{B}=50^o\)

\(\widehat{\dfrac{C}{4}}=20\Rightarrow\widehat{C}=80^o\)

Vậy............................

22 tháng 9 2016

dễ thấy (2x-1)2016, (y-2/5)2016 và /x+y-z/ đều lớn hơn hoặc bằng 0 => mỗi hạng tử trên đều bằng 0 rồi từ đó tính ra

Bài 1: Tính hợp lí:a/ - 2003 + ( - 25 ) + 75 + 2003b/  2 . ( -25 ) . ( -4 ) . 50c/ - 65 . ( 55 - 17 ) - 55 . ( 17 - 65 )d/ \(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\) Bài 2: Tìm x:a/ 11 - ( - 53 + x ) = 97b/ | x + 3 | = 1c/ \(\frac{x}{4}=\frac{5}{x+1}\)  Bài 3:a/ Tìm số tự nhiên x; y biết rằng: \(4< \frac{9}{x}< \frac{12}{y}< 18\) b/ Tìm số nguyên x; y biết rằng: \(\frac{x}{2}-\frac{2}{y}=\frac{1}{2}\) c/ Tìm số tự nhiên a và b...
Đọc tiếp

Bài 1: Tính hợp lí:

a/ - 2003 + ( - 25 ) + 75 + 2003

b/  2 . ( -25 ) . ( -4 ) . 50

c/ - 65 . ( 55 - 17 ) - 55 . ( 17 - 65 )

d/ \(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\) 

Bài 2: Tìm x:

a/ 11 - ( - 53 + x ) = 97

b/ | x + 3 | = 1

c/ \(\frac{x}{4}=\frac{5}{x+1}\) 

 

Bài 3:

a/ Tìm số tự nhiên x; y biết rằng: \(4< \frac{9}{x}< \frac{12}{y}< 18\) 

b/ Tìm số nguyên x; y biết rằng: \(\frac{x}{2}-\frac{2}{y}=\frac{1}{2}\) 

c/ Tìm số tự nhiên a và b biết rằng : BCNN = 300 và ƯCLN = 15

Bài 4:

   Cho góc AOB và 2 tia OM và ON nằm trong góc đó sao cho : góc AOM + BON < AOB

a/ Trong 3 tia OA; OM; ON tia nào nằm giữa 2 tia còn lại ? Vì sao ?

b/ Giả sử góc AOM = 60o , BON = 50o, MON = 30o. Tính góc AOB

c/ OI là phân giác của góc AOM, OM có phải là phân giác của góc ION không ? Vì sao ?

Bài 5:

    Tìm các số tự nhiên x; y sao cho : ( x + 1 ) chia hết cho y; ( y + 1 ) chia hết cho x 

ài 5:

6
4 tháng 9 2016

ko khó nhưng nhìu => lười leuleu

4 tháng 9 2016

ukm @soyeon_Tiểubàng giải

12 tháng 12 2016

Ta có: (x - 2)2012 + | y2 - 9 |2014 = 0

=> (x - 2)2012 = 0 và | y2 - 9 |2014 = 0

+) ( x - 2 )2012 = 0

=> (x - 2)2012 = 02012

=> x-2 = 0 => x = 2

+) | y2 - 9 |2014 = 0

=> | y2 - 9 |2014 = 02014

=> | y2 - 9 | = 0

=> y2 - 9 = 0

=> y2 = 9

=> y = 3 hoặc y = -3

Vậy..........

12 tháng 12 2016

vậy(x-2)\(^{2012}\) =0;(y\(^2\) -9)\(^{2014}\) =0

=>x-2=0 y\(^2\) -9=0

x =0+2 y\(^2\) =0+9

x =2 y\(^2\) =9

y\(^2\) =3\(^2\)

=>y=3

22 tháng 9 2016

Do \(\left(2x-1\right)^{2016}\ge0;\left(y-\frac{2}{5}\right)^{2016}\ge0;\left|x+y-z\right|\ge0\)

Mà theo đề bài: \(\left(2x-1\right)^{2016}+\left(y-\frac{2}{5}\right)^{2016}+\left|x+y-z\right|=0\)

=> \(\begin{cases}\left(2x-1\right)^{2016}=0\\\left(y-\frac{2}{5}\right)^{2016}=0\\\left|x+y-z\right|=0\end{cases}\)=> \(\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}\)=> \(\begin{cases}2x=1\\y=\frac{2}{5}\\x+y=z\end{cases}\)=> \(\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\x+y=z\end{cases}\)

=> \(\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}\)

Vậy \(x=\frac{1}{2};y=\frac{2}{5};z=\frac{9}{10}\)