Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-tự vẽ hình
a) xét tam giác ADB và tam giác AEC, ta có:
AD=AE(gt)
Góc ADB=Góc AEC(gt)
DB=CE(gt)
Vậy tam giác ADB = tam giác AEC (c-g-c)
=> AB=AC(cặp cạnh t/ứng)
=> ABC là tam giác cân tại A
b) Xét tam giác DMB và tam giác ENC, ta có:
DB=CE(gt)
Góc MDB=Góc NEC(gt)
Vậy tam giác DMB = tam giác ENC
=> BM=CN(cặp cạnh t/ứng)
=>góc MBD=góc NCE(cặp góc t/ứng)
c) ta thấy: góc MBD=góc CBI(đối đỉnh)
góc NCE=góc BCI(đối đỉnh)
=> góc CBI=góc BCI => tam giác IBC là tâm giác cân tại I
d) Xét tam giác BAI và tam giác CAI, ta có:
AB=AC(cmt)
BI=IC(tam giác IBC cân tại I)
AI là cạnh chung
Vậy tam giác BAI = tam giác CAI
=> góc BAI=IAC(cặp góc t/ứng)
=> AI là tia phân giác của BAC(đpcm)
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
Phải là trên tia đối chứ sao lại EM = EN được bạn thế là chỉ có thể xảy ra trường hợp M trùng với N
Bài 1:
a) Xét tam giác ABM và tam giác ACM
có: AB = AC (gt)
góc BAM = góc CAM (gt)
AM là cạnh chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\)
b) Xét tam giác ABC
có: AB = AC
=> tam giác ABC cân tại A ( định lí tam giác cân)
mà AM là tia phân giác xuất phát từ đỉnh A ( M thuộc BC)
=> M là trung điểm của BC, AM vuông góc với BC ( tính chất đường phân giác, đường cao, đường trung trực, đường trung tuyến, đường cao xuất phát từ đỉnh tam giác cân)
Bài 2:
a) Xét tam giác ABD và tam giác EBD
có: AB = EB (gt)
góc ABD = góc EBD (gt)
BD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)
b) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> AD = ED ( 2 cạnh tương ứng)
c) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> góc BAD = góc BED ( 2 góc tương ứng)
mà góc BAD = 90 độ ( tam giác ABC vuông tại A)
=> góc BED = 90 độ