\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2x-2\right)2x}=\frac{11...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2019

*Bài làm:

~I) Tìm x:

Ta có: \(\frac{1}{2.4}\) + \(\frac{1}{4.6}\) + ... + \(\frac{1}{\left(2x-2\right)2x}\) = \(\frac{11}{48}\)

\(2\) . (\(\frac{1}{2.4}\) + \(\frac{1}{4.6}\) + ... + \(\frac{1}{\left(2x-2\right)2x}\)) = \(2\) . \(\frac{11}{48}\)

\(\frac{2}{2.4}\) + \(\frac{2}{4.6}\) + ... + \(\frac{2}{\left(2x-2\right)2x}\) = \(\frac{22}{48}\)

⇒ (\(\frac{1}{2}\) - \(\frac{1}{4}\)) + (\(\frac{1}{4}\) - \(\frac{1}{6}\)) + ... + (\(\frac{1}{2x-2}\) - \(\frac{1}{2x}\)) = \(\frac{22}{48}\)

\(\frac{1}{2}\) - \(\frac{1}{4}\) + \(\frac{1}{4}\) - \(\frac{1}{6}\) + \(\frac{1}{6}\) - ... - \(\frac{1}{2x-2}\) + \(\frac{1}{2x-2}\) - \(\frac{1}{2x}\) = \(\frac{22}{48}\)

\(\frac{1}{2}\) - \(\frac{1}{2x}\) = \(\frac{22}{48}\)

\(\frac{x}{x}\) . \(\frac{1}{2}\) - \(\frac{1}{2x}\) = \(\frac{22}{48}\)

\(\frac{x}{2x}\) - \(\frac{1}{2x}\) = \(\frac{22}{48}\)

\(\frac{x-1}{2x}\) = \(\frac{22}{48}\)

\(\frac{x-1}{2x}\) = \(\frac{22}{48}\)

\(x-1\) = \(\frac{22}{48}\) . \(2x\)

\(x-1\) = \(\frac{44x}{48}\)

\(x\) = \(\frac{44x}{48}\) + \(1\)

\(x\) = \(\frac{44x}{48}\) + \(\frac{48}{48}\)

\(x\) = \(\frac{44x+48}{48}\)

\(x\) = \(12\) (Chỗ này mình bấm máy tính nên hơi tắt;Bạn thông cảm)

*Vậy \(x\) = \(12\) .

11 tháng 8 2019

Violympic toán 7

8 tháng 10 2019

a, \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=-\frac{11}{4}\)

\(\frac{1}{2}-x=\frac{57}{28}\)

\(x=-\frac{43}{28}\)

b, \(\left(2x-1\right)^2-5=20\)

\(\Rightarrow\left(2x-1\right)^2=25\)

\(\Rightarrow2x-1=\pm5\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

8 tháng 10 2019

b, \(\left(2x-1\right)^2-5=20\)

\(\Rightarrow\left(2x-1\right)^2=25\)

\(\Rightarrow\left(2x-1\right)^2=5^2\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=6\\2x-1=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=7\\2x=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy ...

8 tháng 10 2019

a) \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=\frac{-11}{4}\)

\(\Rightarrow\left(\frac{1}{2}-x\right)=\left(-\frac{5}{7}\right)+\frac{11}{4}\)

\(\Rightarrow\frac{1}{2}-x=\frac{57}{28}\)

\(\Rightarrow x=\frac{1}{2}-\frac{57}{28}\)

\(\Rightarrow x=-\frac{43}{28}\)

Vậy \(x=-\frac{43}{28}.\)

b) \(\left(2x-1\right)^2-5=20\)

\(\Rightarrow\left(2x-1\right)^2=20+5\)

\(\Rightarrow\left(2x-1\right)^2=25\)

\(\Rightarrow2x-1=\pm5\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=5+1=6\\2x=\left(-5\right)+1=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6:2\\x=\left(-4\right):2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x\in\left\{3;-2\right\}.\)

d) \(\frac{x-6}{4}=\frac{4}{x-6}\)

\(\Rightarrow\left(x-6\right).\left(x-6\right)=4.4\)

\(\Rightarrow\left(x-6\right).\left(x-6\right)=16\)

\(\Rightarrow\left(x-6\right)^2=16\)

\(\Rightarrow x-6=\pm4\)

\(\Rightarrow\left[{}\begin{matrix}x-6=4\\x-6=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4+6\\x=\left(-4\right)+6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10\\x=2\end{matrix}\right.\)

Vậy \(x\in\left\{10;2\right\}.\)

Chúc bạn học tốt!

13 tháng 1 2017

\(a.\)

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x-1\right).\left(2x+1\right)}=\frac{49}{99}\)

\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x-1\right).\left(2x+1\right)}\right)=\frac{49}{99}\)

\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x-1}-\frac{1}{2x+1}\right)=\frac{49}{99}\)

\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{2x+1}\right)=\frac{49}{99}\)

\(\Rightarrow\frac{x}{2x+1}=\frac{49}{99}\)

\(\Rightarrow99x=49.\left(2x+1\right)\)

\(\Rightarrow99x=98x+49\)

\(\Rightarrow x=49\)

Vậy : \(x=49\)

\(b.\)

\(1-3+3^2-3^3+...+\left(-3^x\right)=\frac{1-9^{1006}}{4}\)

Đặt \(A=1-3+3^2-3^3+...+\left(-3^x\right)\)

\(\Rightarrow3A=3-3^2+3^3-3^4+...+\left(-3^{x+1}\right)\)

\(\Rightarrow3A+A=1+\left(-3^{x+1}\right)\)

\(\Rightarrow4A=1+\left(-3^{x+1}\right)\)

\(\Rightarrow A=\frac{1+\left(-3^{x+1}\right)}{4}\)

\(\Rightarrow\frac{1+\left(-3^{x+1}\right)}{4}=\frac{1-9^{1006}}{4}\)

\(\Rightarrow-3^{x+1}=-9^{1006}\)

\(\Rightarrow-3^{x+1}=-3^{2012}\)

\(\Rightarrow x+1=2012\)

\(\Rightarrow x=2012-1\)

\(\Rightarrow x=2011\)

Vậy : \(x=2011\)

20 tháng 12 2017

làm hộ mình cái để mai nộp thầy,ai nhanh và đúng thì mình k cho nha

13 tháng 4 2019

\(a)-3\frac{1}{2}+\frac{1}{3}.\left(x-1\right)=-1\frac{1}{3}:2\frac{1}{3}\)

\(-\frac{7}{2}+\frac{1}{3}.\left(x-1\right)=-\frac{4}{3}:\frac{7}{3}\)

\(-\frac{7}{2}+\frac{1}{3}.\left(x-1\right)=-\frac{4}{7}\)

\(\frac{1}{3}.\left(x-1\right)=-\frac{4}{7}-\frac{-7}{2}\)

\(\frac{1}{3}.\left(x-1\right)=\frac{41}{14}\)

\(\Rightarrow x-1=\frac{41}{14}:\frac{1}{3}\)

\(\Rightarrow x-1=\frac{123}{14}\)

\(\Rightarrow x=\frac{123}{14}+1\)

\(\Rightarrow x=\frac{137}{14}\)

17 tháng 7 2019

a) \(\frac{4}{x+5}=\frac{3}{2x-1}\)

=> 4(2x - 1) = 3(x + 5)

=> 8x - 4 = 3x + 15

=> 8x - 3x = 15 + 4

=> 5x = 19

=> x = 19/5

b) \(\frac{x+11}{19}+\frac{x+12}{20}+\frac{x+13}{21}=3\)

=> \(\left(\frac{x+11}{19}-1\right)+\left(\frac{x+12}{20}-1\right)+\left(\frac{x+13}{21}-1\right)=0\)

=> \(\frac{x-8}{19}+\frac{x-8}{20}+\frac{x-8}{21}=0\)

=> \(\left(x-8\right)\left(\frac{1}{19}+\frac{1}{20}+\frac{1}{21}\right)=0\)

=> x - 8 = 0

=> x = 8

c) \(\left(2x-1\right)^2=\left(2x-1\right)^3\)

=> \(\left(2x-1\right)^2-\left(2x-1\right)^3=0\)

=> \(\left(2x-1\right)^2.\left[1-\left(2x-1\right)\right]=0\)

=> \(\orbr{\begin{cases}\left(2x-1\right)^2=0\\1-\left(2x-1\right)=0\end{cases}}\)

=> \(\orbr{\begin{cases}2x-1=0\\1-2x+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}2x=1\\2-2x=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{1}{2}\\2x=2\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}\)

17 tháng 7 2019

a) 4/x + 3 = 3/2x - 1

<=> 4.(2x - 1) = (x + 3).3

<=> 8x - 4 = 3x + 9

<=> 8x = 3x + 9 + 4

<=> 8x = 3x + 13

<=> 8x - 3x = 13

<=> 5x = 13

<=> x = 13/5

=> x = 13/5

c) (2x - 1)2 = (2x - 1)3

<=> 4x2 - 4x + 1 = 8x3 - 12x2 + 6x - 1

<=> 8x3 - 12x2 + 6x - 1 = 4x2 - 4x + 1

<=> 8x3 - 12x2 + 6x - 1 - 1 = 4x2 - 4x

<=> 8x3 - 12x2 + 6x - 2x = 4x2 - 4x

<=> 8x3 - 12x2 + 6x - 2x - 4x = 4x2

<=> 8x3 - 12x2 + 10x - 2 = 4x2

<=> 8x3 - 12x2 + 10x - 2 - 4x2 = 0

<=> 8x2 - 16x2 + 10x - 2 = 0

<=> 2(x - 1)(2x - 1)2 = 0

<=> x - 1 = 0 hoặc 2x - 1 = 0

       x = 0 + 1         2x = 0 + 1

       x = 1               2x = 1

                              x = 1/2

=> x = 1 hoặc x = 1/2