K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

a) (2x - 1) x - x (2x + 3) = 7

<=> x (2x - 1 - 2x - 3) = 7

<=> -4x = 7

<=> x = \(-\dfrac{7}{4}\)

b) 3 (2x - 1) - 5 (x - 3) + 6 (3x - 4) = 24

<=> 6x - 3 - 5x + 15 + 18x - 24 = 24

<=> 19x - 12 = 24

<=> 19x = 36

<=> x = \(\dfrac{36}{19}\)

24 tháng 7 2018

a,6x-3-5x+15+18x-24=24

19x-12=24

19x=36

x=36/19

c,10x-6x2+6x2-10x+21=3

0x=-18

không có x

d,3x2+3x-2x2-4x=-1-x

x2-x=-1-x

x2-x+x=-1

x2=-1

không có x thỏa mãn

24 tháng 7 2018

b,2x2+3x2-3=5x2+5x

5x2-5x2-5x=3

-5x=3

x=\(\frac{-3}{5}\)

8 tháng 6 2019

Tìm x:

1. 3x (2x + 3) - (2x + 5).(3x - 2) = 8

\(\Leftrightarrow6x^2+9x-6x^2+4x-15x+10=0 \)

\(\Leftrightarrow-2x+10=0\Leftrightarrow x=5\)

Vậy x = 5

2. 4x (x -1) - 3(x2 - 5) -x2 = (x - 3) - (x + 4)

\(\Leftrightarrow4x^2-4x-3x^2+15-x^2=x-3-x-4\)

\(\Leftrightarrow-4x+15=-7\)

\(\Leftrightarrow-4x=-22\Leftrightarrow x=\frac{11}{2}\)

Vậy x = \(\frac{11}{2}\)

3. 2 (3x -1) (2x +5) - 6 (2x - 1) (x + 2) = -6

\(\Leftrightarrow2\left(6x^2+15x-2x-5\right)-6\left(2x^2+4x-x-2\right)=-6\)

\(\Leftrightarrow12x^2+30x-4x-10-12x^2-24x+6x+12=-6\)

\(\Leftrightarrow8x=-8\Leftrightarrow x=-1\)

Vậy x = -1

4. 3 ( 2x - 1) (3x - 1) - (2x - 3) (9x - 1) - 3 = -3

\(\Leftrightarrow3\left(6x^2-2x-3x+1\right)-18x^2+2x+27x-3-3=-3\)

\(\Leftrightarrow18x^2-6x-9x+3-18x^2+2x+27x-6=-3\)

\(\Leftrightarrow14x=0\Leftrightarrow x=0\)

Vậy x = 0

5. (3x - 1) (2x + 7) - ( x + 1) (6x - 5) = (x + 2) - (x - 5)

\(\Leftrightarrow6x^2+21x-2x-7-6x^2+5x-6x+5=7\)

\(\Leftrightarrow18x=9\Leftrightarrow x=\frac{1}{2}\)

Vậy x = \(\frac{1}{2}\)

6. 3xy (x + y) - (x + y) (x2 + y2 + 2xy) + y3 = 27

\(\Leftrightarrow3x^2y+3xy^2-\left(x+y\right)^3+y^3=27\)

\(\Leftrightarrow3x^2y+3xy^2-x^3-y^3-3x^2y-3xy^2+y^3=27\)

\(\Leftrightarrow-x^3=27\)

\(\Leftrightarrow x=-3\)

Vậy x = -3

7. 3x (8x - 4) - 6x (4x - 3) = 30

\(\Leftrightarrow24x^2-12x-24x^2+12x=30\)

\(\Leftrightarrow0=30\) ( vô lý)

Vậy pt vô nghiệm

8. 3x (5 - 2x) + 2x (3x - 5) = 20

\(\Leftrightarrow15x-6x^2+6x^2-10x=20\)

\(\Leftrightarrow5x=20\Leftrightarrow x=4\)

Vậy x = 4

1 tháng 5 2017

a, 3y-2y=2y-3

    3y-2y-2y=3

    -y=3

     y=-3

b, 3-4x+24+6x=x+27+3x

   -4x+6x-x-3x =27-3-24

   -2x              =0

      x             =0

  

1 tháng 5 2017

c, 5-(6-x)=4.(3-2x)

   5-6+x =12-8x

   x+8x  =12+6-5

  9x      =13

   x       =13/9

d, 4.(x+3)=-7x+17

   4x+12  =-7x+17

4x+7x     =17-12

11x         =5

  x          =5/11

3 tháng 2 2017

a. \(3-4x\left(25-2x\right)-8x^2+x-300=0\)

\(\Leftrightarrow3-100x+8x^2-8x^2+x-300=0\)

\(\Leftrightarrow-297-99x=0\)

\(\Leftrightarrow x=3\)

Vậy \(n_0\) của PT là: x=3

b. \(\Leftrightarrow\frac{\left(2-6x\right)}{5}-2+\frac{3x}{10}=7-\frac{3x+3}{4}\)

\(\Leftrightarrow\frac{\left(4-12x\right)}{5}-\frac{20}{10}+\frac{3x}{10}=\frac{\left(28-3x-3\right)}{4}\)

\(\Leftrightarrow\frac{\left(-16-9x\right)}{10}=\frac{\left(25-3x\right)}{4}\)

\(\Leftrightarrow-64-36x=250-30x\)

\(\Leftrightarrow-6x=314\)

\(\Leftrightarrow x=-\frac{157}{3}\)

Vậy -\(n_0\) của PT là: \(x=\frac{-157}{3}\)

c. \(5x+\frac{2}{6}-8x-\frac{1}{3}=4x+\frac{2}{5}-5\)

\(\Leftrightarrow-3x=4x-\frac{23}{5}\)

\(\Leftrightarrow7x=\frac{23}{5}\)

\(\Leftrightarrow x=\frac{23}{35}\)

Vậy \(n_0\) của PT là: \(x=\frac{23}{35}\)

d. \(3x+\frac{2}{3}-3x+\frac{1}{6}=2x+\frac{5}{3}\)

\(\Leftrightarrow\frac{5}{6}=2x+\frac{5}{3}\)

\(\Leftrightarrow x=-\frac{5}{12}\)

Vậy \(n_0\) của Pt là: \(x=-\frac{5}{12}\)

8 tháng 9 2018

k mk đi

ai k mk 

mk k lại

thanks

12 tháng 8 2020

không ai trả lời 

a,\(2\left(3x-1\right)-5\left(x-3\right)-9\left(2x-4\right)=24\)

\(< =>6x-2-5x+15-18x+36=24\)

\(< =>-29x+49=24< =>29x=25< =>x=\frac{25}{29}\)

b,\(2x^2+4\left(x^2-1\right)=2x\left(3x+1\right)\)

\(< =>2x^2+4x^2-4=6x^2+2x\)

\(< =>2x=-4< =>x=-\frac{4}{2}=-2\)

c, \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=4\)

\(< =>10x-6x^2+6x^2-10x-3x+21=4\)

\(< =>-3x=4-21=-17< =>x=\frac{17}{3}\)

d, \(5x\left(x+1\right)-4x\left(x+2\right)=1-x\)

\(< =>5x^2+5x-4x^2-8x=1-x\)

\(< =>x^2-3x+x-1=0\)

\(< =>x^2-2x-1=0\)

\(< =>\left(x-1\right)^2=2\)

\(< =>\orbr{\begin{cases}x-1=\sqrt{2}\\x-1=-\sqrt{2}\end{cases}}\)

\(< =>\orbr{\begin{cases}x=1+\sqrt{2}\\x=1-\sqrt{2}\end{cases}}\)