\(x^2-3x+8=4\sqrt{3x-5}\)

help me !!!

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

ĐK:....

\(x^2-3x+8=4\sqrt{3x-5}\)

\(\Leftrightarrow x^2-3x+8-4\sqrt{3x-5}=0\)

\(\Leftrightarrow3x-5-4\sqrt{3x-5}+4+x^2-6x+9=0\)

\(\Leftrightarrow\left(\sqrt{3x-5}-2\right)^2+\left(x-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{3x-5}-2=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-5=4\\x=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=3\end{matrix}\right.\)

\(\Leftrightarrow x=3\)

Vậy \(x=3\)

1 tháng 8 2019

xem ra anh ghê nhỉ:)

31 tháng 7 2019

ĐK:x>=5/3

PT <=> \(x^2-3x=4\left(\sqrt{3x-5}-2\right)\)

\(\Leftrightarrow x\left(x-3\right)-\frac{12\left(x-3\right)}{\sqrt{3x-5}+2}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-\frac{12}{\sqrt{3x-5}+2}\right)=0\)

<=> x = 3 (giải cả hai cái ngoặc nó đều ra x = 3)

P/s: Sai thì thôi nha!

31 tháng 7 2019

bn giải rõ đc k ạ

tự nhiên con 8 đâu mất rồi ạ

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Lời giải:

ĐKXĐ: \(x\geq \frac{5}{3}\)

Ta có: \(4\sqrt{3x-5}-8=0\Leftrightarrow 4\sqrt{3x-5}=8\Leftrightarrow \sqrt{3x-5}=2\)

\(\Rightarrow 3x-5=4\Rightarrow x=\frac{4+5}{3}=3\) (thỏa mãn)

Vậy $x=3$

27 tháng 7 2019

\(dkxd:x\ge-1;\sqrt{x-4\sqrt{x+1}+3}=5\Leftrightarrow x-4\sqrt{x+1}+3=25\Leftrightarrow x+1-4\sqrt{x+1}+2=25\Leftrightarrow\left(x+1\right)-4\sqrt{x+1}+4=27\Leftrightarrow\left(\sqrt{x+1}-2\right)^2=27\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=-\sqrt{27}+2\left(< 0loai\right)\\\sqrt{x+1}=\sqrt{27}+2\left(tm\right)\end{matrix}\right.\Leftrightarrow x+1=31+4\sqrt{27}\Leftrightarrow x=30+4\sqrt{27}\)

27 tháng 7 2019

\(\sqrt{x-4\sqrt{x+1}+3}=5\)

\(\Leftrightarrow x-4\sqrt{x+1}+3=25\)

\(\Leftrightarrow x-4\sqrt{x+1}-22=0\)

\(\Leftrightarrow x+1-4\sqrt{x+1}+4-27=0\)

\(\Leftrightarrow\left(\sqrt{x+1}-2\right)^2=27=\left(\pm\sqrt{27}\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}-2=\sqrt{27}\\\sqrt{x+1}-2=-\sqrt{27}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=\sqrt{27}+2\left(chon\right)\\\sqrt{x+1}=-\sqrt{27}-2\left(loai\right)\end{matrix}\right.\)

Xét \(\sqrt{x+1}=\sqrt{27}+2\)

\(\Leftrightarrow x+1=31+12\sqrt{3}\)

\(\Leftrightarrow x=30+12\sqrt{3}\)

Vậy...

27 tháng 9 2016

a)\(1+\sqrt{3x+1}=3x\)\(\Leftrightarrow\sqrt{3x+1}=3x-1\Leftrightarrow3x+1=\left(3x-1\right)^2\)

\(\Leftrightarrow3x-1=9x^2-6x+1\Leftrightarrow9x^2-6x+1-3x+1=0\)

\(\Leftrightarrow9x^2-9x+2=0\Leftrightarrow9x^2-6x-3x+2=0\)

\(\Leftrightarrow3x\cdot\left(3x-2\right)-\left(3x-2\right)=0\Leftrightarrow\left(3x-1\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}3x-1=0\\3x-2=0\end{cases}\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{3}\\x=\frac{2}{3\left[\right]}\end{array}\right.}\)

 

 

 

23 tháng 10 2019

b. \(\frac{\sqrt{5x+7}}{x+3}=4\)

ĐKXĐ: \(x\ge-\frac{7}{5}\)

\(\Leftrightarrow\sqrt{5x+7}=4\left(x+3\right)\\ \Leftrightarrow\left(\sqrt{5x+7}\right)^2=\left[4\left(x+3\right)\right]^2\\ \Leftrightarrow5x+7=16\left(x^2+6x+9\right)\\ \Leftrightarrow5x+7=16x^2+96x+144\\ \Leftrightarrow16x^2+96x-5x+144-7=0\\ \Leftrightarrow16x^2+91x+137=0\\ \Leftrightarrow\left(4x\right)^2+2.4x.\frac{91}{8}+\frac{8281}{64}+\frac{487}{64}=0\\ \Leftrightarrow\left(4x+\frac{91}{8}\right)^2+\frac{487}{64}=0\left(1\right)\)

\(\left(4x+\frac{91}{8}\right)^2\ge0\forall x\Rightarrow\left(4x+\frac{91}{8}\right)^2+\frac{487}{64}\ge\frac{487}{64}>0\forall x\)

\(\Rightarrow\) phương trình (1) không xảy ra.

Vậy không cógiá trị nào của x thỏa mãn phương trình.

NV
15 tháng 10 2019

ĐKXĐ: \(-2\le x\le2\)

Đặt \(\sqrt{2-x}+\sqrt{2+x}=a>0\Rightarrow a^2=4+2\sqrt{4-x^2}\)

Phương trình trở thành:

\(a+\frac{a^2-4}{2}=2\)

\(\Leftrightarrow a^2+2a-8=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-4\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2-x}+\sqrt{2+x}=2\)

\(\sqrt{2-x}+\sqrt{2+x}\ge\sqrt{2-x+2+x}=2\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left[{}\begin{matrix}2-x=0\\2+x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

14 tháng 7 2019

\(\left\{{}\begin{matrix}\sqrt{x^2-4}\ge0\\\sqrt{x+2}\ge0\end{matrix}\right.\Rightarrow\sqrt{x^2-4}+\sqrt{x+2}\ge0mà:\sqrt{x^2-4}+\sqrt{x+2}=0\Rightarrow\left\{{}\begin{matrix}x^2-4=0\\x+2=0\end{matrix}\right.\Rightarrow x=-2\)

14 tháng 7 2019

Em ko chắc đâu nhất là cái đk ý.

Nhận xét x = -2 là một nghiệm do đó xét x khác -2:

ĐK: \(x\ge2\). Đặt \(\sqrt{x+2}=a\ge2;\sqrt{x-2}=b\ge0\) . Theo đề bài thì:

ab + a = 0 <=> a(b+1) = 0 <=> a = 0 (loại) hoặc b = - 1( loại)

Vậy 1 nghiệm x = - 2???