Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Theo bài ra , ta có :
(2x - 5) - (3x - 7) = x + 3
(=) 2x - 5 - 3x + 7 = x + 3
(=) -2x = 1
(=) x = -1/2
Vậy x = -1/2
Chúc bạn học tốt =))
Bài 7 :
\(\frac{1}{4}-\left(2x-1\right)^2=0\)
\(\left(2x-1\right)^2=\frac{1}{4}-0\)
\(\left(2x-1\right)^2=\frac{1}{4}\)
\(\left(2x-1\right)^2=\left(\frac{1}{2}\right)^2\)
TH1:\(\Rightarrow2x-1=\frac{1}{2}\)
\(2x=\frac{1}{2}+1\)
\(2x=\frac{3}{2}\)
\(x=\frac{3}{4}\)
TH2:\(\Rightarrow2x-1=-\frac{1}{2}\)
\(2x=-\frac{1}{2}+1\)
\(2x=\frac{1}{2}\)
\(x=\frac{1}{4}\)
Vậy x \(\in\left\{\frac{1}{4};\frac{3}{4}\right\}\)
Bài 6 :
\(3^{x+1}=81\)
\(3^{x+1}=3^4\)
\(x+1=4\)
\(\Rightarrow x=3\)
Vậy x = 3
Bài 3:
\(\left|1-2x\right|+x+2=0\)
⇒ \(\left|1-2x\right|+x=0-2\)
⇒ \(\left|1-2x\right|+x=-2\)
⇒ \(\left|1-2x\right|=-2-x\)
⇒ \(\left[{}\begin{matrix}1-2x=-2-x\\1-2x=2+x\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}1+2=-x+2x\\1-2=x+2x\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}3=1x\\-1=3x\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=3:1\\x=\left(-1\right):3\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=3\\x=-\frac{1}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{3;-\frac{1}{3}\right\}.\)
Bài 4:
\(\left|5x-3\right|=\left|7-x\right|\)
⇒ \(\left[{}\begin{matrix}5x-3=7-x\\5x-3=x-7\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}5x+x=7+3\\5x-x=\left(-7\right)+3\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}6x=10\\4x=-4\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=10:6\\x=\left(-4\right):4\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\frac{5}{3}\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{5}{3};-1\right\}.\)
Chúc bạn học tốt!
a) | 9 + 7x | = 3 - 5x
\(\Rightarrow\orbr{\begin{cases}9+7x=3-5x\\9+7x=-\left(3-5x\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}7x+5x=3-9\\9+7x=-3+5x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}12x=-6\\7x-5x=-3-9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\2x=-12\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\x=-6\end{cases}}\)
Ta có: \(\widehat{A}=\dfrac{2}{5}\widehat{B}=\dfrac{1}{4}\widehat{C}\Rightarrow\widehat{\dfrac{A}{1}}=\widehat{\dfrac{B}{\dfrac{1}{\dfrac{2}{5}}}}=\widehat{\dfrac{C}{\dfrac{1}{\dfrac{1}{4}}}}\)
\(\Rightarrow\widehat{\dfrac{A}{1}}=\widehat{\dfrac{B}{\dfrac{5}{2}}}=\widehat{\dfrac{C}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\widehat{\dfrac{A}{1}}=\dfrac{\widehat{B}}{\dfrac{5}{2}}=\widehat{\dfrac{C}{4}}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{1+\dfrac{5}{2}+4}=\dfrac{180}{9}=20\)
\(\Rightarrow\widehat{A}=20^o\)
\(\widehat{\dfrac{B}{\dfrac{5}{2}}}=20\Rightarrow\widehat{B}=50^o\)
và \(\widehat{\dfrac{C}{4}}=20\Rightarrow\widehat{C}=80^o\)
Vậy............................
b) x2+5x-6 =0
\(\Leftrightarrow x^2+6x-x-6=0\)
\(\Leftrightarrow x\left(x+6\right)-\left(x+6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+6=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=1\end{matrix}\right.\)
Vậy S = {-6;1}
c) x2-4x+3=0
\(\Leftrightarrow x^2-3x-x+3=0\)
\(\Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy S = {3;1}
d) 2x2+5x+3=0
\(\Leftrightarrow2x^2+2x+3x+3=0\)
\(\Leftrightarrow2x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy S = {-1;\(\dfrac{-3}{2}\)}
bài 2
\(\left(x-1\right)^2+\left(x+5\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\) (vô lí)
Vậy pt vô nghiệm
\(\left|5x-3\right|-x=7\)
* Nếu \(5x-3\ge0\Leftrightarrow x\ge\frac{3}{5}\)thì
PT \(\Leftrightarrow5x-3-x=7\)
\(\Leftrightarrow4x=10\)
\(\Leftrightarrow x=2,5\)( tm )
* Nếu 5x-3 < 0 <=> x < 3/5 thì
PT <=> -5x+3-x=7
<=> -6x = 4
<=> x = -2/3 ( tm )
Vậy _
\(\left|5x-3\right|-x=7\)
\(\Rightarrow\left|5x-3\right|=7-\left(-x\right)\)
\(\Rightarrow\orbr{\begin{cases}5x-3=7-\left(-x\right)\\5x-3=-x-7\end{cases}}\)
+) 5x - 3 = 7 - ( - x)
=> 5x - 3 = 7 + x
=> 5x - x = 7 + 3
=> 4x = 10
=> x = 2,5
+) 5x - 3 = - x - 7
=> 6x - x = - 7 + 3
=> 5x = - 4
=> x = - 0,8
vậy x = - 0,8 hoặc x = 2,5