![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.17+8x=10-6x\\\Leftrightarrow 8x+6x=-17+10\\\Leftrightarrow 2x=-7\\ \Leftrightarrow x=-\frac{7}{2}\)
Vậy nghiệm của phương trình trên là \(-\frac{7}{2}\)
\(b.3\left(x+5\right)+7=19-5\left(x-2\right)\\\Leftrightarrow 3x+15+7=19-5x+10\\ \Leftrightarrow3x+5x=-15-7+19+10\\ \Leftrightarrow8x=7\\\Leftrightarrow x=\frac{7}{8}\)
Vậy nghiệm của phương trình trên là \(\frac{7}{8}\)
\(c.3x-4\left(x+2\right)\left(x+3\right)=14-4\left(x^2-3x\right)\\ \Leftrightarrow3x-4\left(x^2+5x+6\right)=14-4x^2+12x\\ \Leftrightarrow4x^2-4x^2+3x-5x-12x=24+14\\ \Leftrightarrow-14x=38\\ \Leftrightarrow x=-\frac{19}{7}\)
Vậy nghiệm của phương trình trên là \(-\frac{19}{7}\)
\(d.x+\frac{3}{4}+3x+2=\frac{x}{3}-3x-\frac{2}{6}\\ \Leftrightarrow\frac{12x}{12}+\frac{9}{12}+\frac{36x}{12}+\frac{24}{12}=\frac{4x}{12}-\frac{36x}{12}-\frac{4}{12}\\ \Leftrightarrow12x+9+36x+24=4x-36x-4\\ \Leftrightarrow12x+36x+36x-4x=-24-9-4\\ \Leftrightarrow80x=-37\\ \Leftrightarrow x=-\frac{37}{80}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
mk chỉ giải đc có bài 1 thui nha bn
\(\frac{4}{x-2}+\frac{1}{x+3}=0\)
ĐKXĐ: x ≠ 2 và x ≠ -3
QĐKM:
⇔(x+3)4 + (x-2)1 = 0
⇔4x + 12 + x - 2 = 0
⇔4x + x = -12 + 2
⇔5x = -10
⇔x= -2
S={-2}
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Ta có: 3x-12=5x(x-4)
\(\Leftrightarrow3x-12-5x\left(x-4\right)=0\)
\(\Leftrightarrow3x-12-5x^2+20x=0\)
\(\Leftrightarrow-5x^2+23x-12=0\)
\(\Leftrightarrow-5x^2+20x+3x-12=0\)
\(\Leftrightarrow\left(-5x^2+20x\right)+\left(3x-12\right)=0\)
\(\Leftrightarrow5x\left(-x+4\right)+3\left(x-4\right)=0\)
\(\Leftrightarrow5x\left(4-x\right)-3\left(4-x\right)=0\)
\(\Leftrightarrow\left(4-x\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4-x=0\\5x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\frac{3}{5}\end{matrix}\right.\)
Vậy: \(x\in\left\{4;\frac{3}{5}\right\}\)
2) Ta có: 3x-15=2x(x-5)
\(\Leftrightarrow3x-15-2x\left(x-5\right)=0\)
\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{5;\frac{3}{2}\right\}\)
3) Ta có: 3x(2x-3)+2(2x-3)=0
\(\Leftrightarrow\left(2x-3\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{-2}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{3}{2};-\frac{2}{3}\right\}\)
4) Ta có: (4x-6)(3-3x)=0
\(\Leftrightarrow\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=6\\3x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{6}{4}=\frac{3}{2}\\x=1\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{3}{2};1\right\}\)
4) (4x - 6 ) ( 3 - 3x ) = 0
<=> \(\left[{}\begin{matrix}4x-6=0\\3-3x=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}4x=6\\3x=3\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\frac{3}{2}\\x=1\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1, a,\(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\)
Từ đó suy ra \(x=-\dfrac{5}{2}\) hoặc \(x=3\)
b, \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\left(x-2\right)\left(3x-1\right)=0\)
Từ đó suy ra \(x=2\) hoặc \(x=\dfrac{1}{3}\)
c, \(\left(2x+5\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\)
Áp dụng hằng đẳng thức hiệu hai bình phương để suy ra:
\(\Leftrightarrow\left(3x+7\right)\left(x+3\right)=0\)
Từ đó suy ra \(x=-\dfrac{7}{3}\) hoặc \(x=-3\)
d, \(x^2-5x+6=0\)
\(\Leftrightarrow x^2-4x+4-x+2=0\)
\(\Leftrightarrow\left(x-2\right)^2-\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
Từ đó suy ra \(x=2\) hoặc \(x=3\)
e, \(2x^3+6x^2=x^2+3x\)
\(\Leftrightarrow2x^3+5x^2-3x=0\)
\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)
\(x\left(2x^2+6x-x-3\right)=0\)
\(\Leftrightarrow x\left[2x\left(x+3\right)-\left(x+3\right)\right]=0\)
\(\Leftrightarrow x\left(2x-1\right)\left(x+3\right)=0\)
Từ đó suy ra \(x=0\) hoặc \(x=\dfrac{1}{2}\) hoặc \(x=-3\)
CHÚC BẠN HỌC GIỎI.................
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1: Giaỉ các pt:
a) \(3x-15=0\\ < =>3x=15\\ =>x=\dfrac{15}{3}=5\)
Vậy: tập nghiệm của phương trình là S= {5}
b) \(\left(x-3\right)\left(2x+4\right)=0\\ < =>\left[{}\begin{matrix}x-3=0\\2x+4=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy: tập nghiệm của phương trình là S= {-2;3}
Bài 2:
Vì \(3a-5< 3b-5\\ =>3a-5+5< 3b-5+5\) (cộng 5 vào 2 vế)
\(< =>3a< 3b\\ =>3a.\dfrac{1}{3}< 3b.\dfrac{1}{3}\) (nhân 1/3 vào 2 vế)
\(< =>a< b\)
Bài 3: Giaỉ pt:
\(\dfrac{1}{x+1}-\dfrac{5}{x-2}=\dfrac{15}{\left(x+1\right)\left(x-2\right)}\\ \left(ĐKXĐ:\left[{}\begin{matrix}x+1\ne0< =>x\ne-1\\x-2\ne0< =>x\ne2\end{matrix}\right.\right)\)
\(< =>\dfrac{x-2}{\left(x+1\right)\left(x-2\right)}-\dfrac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{15}{\left(x+1\right)\left(x-2\right)}\\ < =>x-2-5x-5=15\\ < =>-5x+x=15+5+2\\ < =>-4x=22\\ =>x=\dfrac{22}{-4}=-\dfrac{11}{2}\left(TMĐK\right)\)
Vậy: tập nghiệm của phương trình là S= \(\left\{-\dfrac{11}{2}\right\}\)
Bài 4: Giaỉ bpt - biểu diễn trục số
\(4x+3\ge7\\ < =>4x\ge4\\ < =>x\ge\dfrac{4}{4}\\ < =>x\ge1\)
Vậy: tập nghiệm của bất phương trình là S= \(\left\{x|x\ge1\right\}\)
Biểu diễn trục số:
0 1
Bài 1 :
a ) 3x - 15 = 0
\(\Leftrightarrow\) 3x = 15
\(\Leftrightarrow\) x = 5
Vậy phương trình có nghiệm x = 5 .
b ) \(\left(x-3\right)\left(2x+4\right)=0\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\2x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy phương trình có nghiệm x = 3 hoặc x = -2
Nếu \(x< \frac{1}{3}\) thì pt trở thành:
\(1-3x+2-x=4\)
\(\Leftrightarrow\)\(3-4x=4\)
\(\Leftrightarrow\)\(4x=-1\)
\(\Leftrightarrow\)\(x=-\frac{1}{4}\) (thỏa mãn)
Nếu \(\frac{1}{3}\le x\le2\) thì pt trở thành:
\(3x-1+2-x=4\)
\(\Leftrightarrow\)\(2x=3\)
\(\Leftrightarrow\)\(x=\frac{3}{2}\) (thỏa mãn)
Nếu \(x>2\) thì pt trở thành:
\(3x-1+x-2=4\)
\(\Leftrightarrow\)\(4x=7\)
\(\Leftrightarrow\)\(x=\frac{7}{4}\)(loại)
Vậy...
Ta có bảng xét dấu :
+) Nếu \(x\le\frac{1}{3}\Leftrightarrow|3x-1|=1-3x\)
\(|x-2|=2-x\)
\(pt\Leftrightarrow\left(1-3x\right)+\left(2-x\right)=4\)
\(\Leftrightarrow-4x=1\)
\(\Leftrightarrow x=-\frac{1}{4}\left(tm\right)\)
+) Nếu \(\frac{1}{3}< x< 2\Leftrightarrow|3x-1|=3x-1\)
\(|x-2|=2-x\)
\(pt\Leftrightarrow\left(3x-1\right)+\left(2-x\right)=4\)
\(\Leftrightarrow2x=3\)
\(\Leftrightarrow x=\frac{3}{2}\left(tm\right)\)
+) Nếu \(x\ge2\Leftrightarrow|3x-1|=3x-1\)
\(|x-2|=x-2\)
\(pt\Leftrightarrow\left(3x-1\right)+\left(x-2\right)=4\)
\(\Leftrightarrow4x=7\)
\(\Leftrightarrow x=\frac{7}{4}\) ( loại )
Vậy phương trình có tập nghiệm \(S=\left\{\frac{3}{2};-\frac{1}{4}\right\}\)