
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{1}{2!}+\frac{2!}{4!}+...+\frac{198!}{200!}=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-...+\frac{1}{199}-\frac{1}{200}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

Gọi biểu thức là A ta có :
2A = 1 / 2 ^ 2 + 1 / 2 ^ 3 + ... + 1 / 2 ^ 11
2A - A = 1 / 2 ^ 11 - 1 / 2
KO tính được ra kết quả nên cứ để thế

1,
ta có : \(\frac{\overline{abab}}{\overline{cdcd}}=\frac{\overline{abab}:101}{\overline{cdcd}:101}=\frac{\overline{ab}}{\overline{cd}}\) ; \(\frac{\overline{ababab}}{\overline{cdcdcd}}=\frac{\overline{ababab}:10101}{\overline{cdcdcd}:10101}=\frac{\overline{ab}}{\overline{cd}}\)
Vậy \(\frac{\overline{abab}}{\overline{cdcd}}=\frac{\overline{ababab}}{\overline{cdcdcd}}\)
2,
\(\frac{1}{2}.\frac{1}{b}=\frac{2}{4}\)
\(\Rightarrow\frac{1.1}{2.b}=\frac{2}{4}\)
\(\Rightarrow\frac{1}{2.b}=\frac{1}{2}\)
\(\Rightarrow2.b=2\)
\(\Rightarrow b=2:2=1\)
\(\frac{abab}{cdcd}=\frac{abab:101}{cdcd:101}=\frac{ab}{cd}\)
mà \(\frac{ababab}{cdcdcd}=\frac{ababab:10101}{cdcdcd:10101}=\frac{ab}{cd}\)
=> \(\frac{abab}{cdcd}=\frac{ababab}{cdcdcd}\)
vậy...
câu 2
\(\frac{1}{2}.\frac{1}{b}=\frac{2}{4}\\ \Rightarrow\frac{1}{b}=\frac{2}{4}:\frac{1}{2}=1\\ \Rightarrow b=1\)
vậy....

3) Ta có : \(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
4)
A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
A = \(\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}.\left(\frac{1}{99}-\frac{1}{101}\right)\)
A = \(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
A = \(\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(A=\frac{1}{2}.\frac{100}{101}\)
A = \(\frac{50}{101}\)
2, đặt tên biểu thức trên là A. Ta có :
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)
\(A=1-\frac{1}{101}\)
\(A=\frac{100}{101}\)
1) \(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(=1-\frac{1}{5}\)
\(=\frac{4}{5}\)

a) 820 và 720
vì 8>7 nên 820>720
b) 420 và 1620
vì 4<16 nên 420<1620
c) 277= (33)7= 321
815=( 34)5=320
vì 21>20 nên 321>320 hay 277> 815
e) 521= 520 . 5
vì 520 . 5>520 . 4 nên 521> 4 . 520
Bài 1 :
a,820 > 720
b, 420 = 1610
c, 277 > 815
d , 554 > 381
e, 521 > 4 . 520
f, 220 > 7.217

\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{200}\left(1+2+....+200\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{200}.\frac{200.201}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{201}{2}\)
\(=\frac{2+3+4+...+201}{2}\)
\(=\frac{\frac{201.202}{2}-1}{2}=10150\)

\(S=1+\frac{1}{\left(\frac{3.2}{2}\right)}+\frac{1}{\left(\frac{4.3}{2}\right)}+\frac{1}{\left(\frac{5.4}{2}\right)}+...+\frac{1}{\left(\frac{9.8}{2}\right)}\)
\(=1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{9}\right)\)
\(=1+2.\frac{7}{18}\)
\(=1\frac{7}{9}\)
Chúc bn học tốt nhé!!! :)

a, Ta có: \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=100-\left[1+\left(1-\frac{1}{2}\right)+\left(1-\frac{2}{3}\right)+....+\left(1-\frac{99}{100}\right)\right]\)
\(=100-\left[\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)
\(=100-\left[100-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)
\(=100-100+\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)
\(=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)(đpcm)
b, Ta có: \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)(đpcm)
a, \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...\)\(+\frac{99}{100}\)
Xét: \(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
= \(\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)
= \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{100}\right)\)
= \(\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)( có 99 số hạng là 1 )
= \(99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
= \(\left(99+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
= \(100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(\Rightarrow100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)( đpcm )
Vậy: ...