K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2016

Kéo dài AC cắt BD tại M.

Ta có : CH // BM ( vìcùng vuông góc với AB )

--> \(\frac{IH}{BD}=\frac{AI}{AD};\frac{IC}{DM}=\frac{AI}{AD}\rightarrow\frac{IH}{BD}=\frac{IC}{DM}\left(1\right)\)

Mặt khác: CD=BD(tính chất 2 tiếp tuyến cắt nhau) --> góc DCB= góc DBC

Mà : góc DCB + góc DCM =90o; góc DBC +góc CMB =90o --> góc DCM =góc CMD -->MD =CD ,mà CD=DB-->MD=DB (2)

Từ 1 và 2 --> IH=IC -->I là trung điểm CH

Câu 1: a) Cho hàm số y = ax + b, xác định a,b biết đồ thị hàm số đi qua điểm A( -1;2) và song song với đường thẳng y = 2x+3, vẽ đồ thị hàm số với giá trị a, b vừa tìm được b) Cho hàm số : y = mx – m + 2, có đồ thị là đường thẳng (d) Tìm tọa độ điểm cố định mà đường thẳng (d) luôn đi qua với mọi giá trị của m c) Tìm m để đường thẳng d cắt đường thẳng y = 2x -3 tại điểm...
Đọc tiếp

Câu 1: a) Cho hàm số y = ax + b, xác định a,b biết đồ thị hàm số đi qua điểm A( -1;2) và song song với đường thẳng y = 2x+3, vẽ đồ thị hàm số với giá trị a, b vừa tìm được b) Cho hàm số : y = mx – m + 2, có đồ thị là đường thẳng (d) Tìm tọa độ điểm cố định mà đường thẳng (d) luôn đi qua với mọi giá trị của m c) Tìm m để đường thẳng d cắt đường thẳng y = 2x -3 tại điểm nằm trên trục hoành.            Câu 2: Cho đường tròn tâm O đường kính AB. Trên đường tròn lấy điểm C sao cho AC < BC (C khác A). Tiếp tuyến Bx của đường tròn (O) cắt đường trung trực của BC tại D. Gọi F là giao điểm của DO và BC. a) Chứng minh CD là tiếp tuyến của đường tròn (O) b) Gọi E là giao điểm của AD với đường tròn (O) (với E khác A). Chứng minh DE.DA = DC^2 = DF.DO c) Gọi H là hình chiếu của C trên AB, I là giao điểm của AD và CH. Chứng minh I là trung điểm của CH.

0
5 tháng 7 2021

DC = DA

OA = OC

Do đó OD là trung trực của đoạn thẳng AC : suy ra OD vuông góc với AC

Tứ giác OECH có góc CEO + góc CHO = 180 độ 

Suy ra tứ giác OECH là tứ giác nội tiếp

21 tháng 3 2020

Mk không biết tải hình lên, xin lỗi bn nhé.

a) Do AB là đường kính của (O) nên

\(\Rightarrow\widehat{ACB}=\widehat{ADB}=90^0\)

Xét tứ giác CEDF có : \(\widehat{ECF}+\widehat{EDF}=180^0\)

\(\Rightarrow ECDF\)là tứ giác nội tiếp (ĐPCM)

b) Do \(\widehat{ECF}=\widehat{EDF}=90^0\)nên ECDF nội tiếp đường tròn đường kính EF

Hay ECDF nội tiếp (I;IE) nên

\(\widehat{IDF}=\widehat{IFD}=\widehat{ECD}=\frac{1}{2}sđ\widebat{BD}=\widehat{OAD}=\widehat{ODA}\)

Từ đó ta có: \(\widehat{IDO}=\widehat{IDE}+\widehat{OAD}=\widehat{IDE}+\widehat{IDF}=90^0\)

\(\Rightarrow\)ID là tiếp tuyến của đường tròn (O) (ĐPCM)