Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{b}{3}\Rightarrow\frac{2b}{6};\frac{c}{4}\Rightarrow\frac{3c}{12}\)
\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
\(\frac{a}{2}=5\Rightarrow a=10\)
\(\frac{2b}{6}=5\Rightarrow b=15\)
\(\frac{3c}{12}=5\Rightarrow c=20\)
tíc mình nha
Theo t/c dãy tỉ số bằng nhau :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
\(\Rightarrow a=10;b=15;c=20\)
Tìm các số a, b, c biết rằng :
1 . Ta có: \(\frac{a}{20}=\frac{b}{9}=\frac{c}{6}=\frac{a}{20}=\frac{2b}{9.2}=\frac{4c}{6.4}=\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)
Ap dụng tính chất dãy tỉ số bắng nhau ta dược :
\(\frac{a}{20}=\frac{2b}{18}=\frac{4c}{24}\)=\(\frac{a-2b+4c}{20-18+24}=\frac{13}{26}=\frac{1}{3}\)( do x+2b+4c=13)
Nên : a/20=1/3\(\Leftrightarrow\) a=1/3.20 \(\Leftrightarrow\)a=20/3
b/9=1/3 \(\Leftrightarrow\) b=1/3.9 \(\Leftrightarrow\) b=3
c/6=1/3 \(\Leftrightarrow\) c=1/3.6 \(\Leftrightarrow\) c= 2
bài này dễ mà bạn
bạn sử dụng tình chất dãy tỉ số bằng nhau là ra mà
i) Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow\begin{cases}a=2k\\b=3k\\c=4k\end{cases}\)
Vì a3 + b3 + c3 = 792 => 8k3 + 27k3 + 64k3 = 792 => 99k3 = 792 => k3 = 8 => k = 2
=> \(\begin{cases}a=4\\b=6\\c=8\end{cases}\)
Bài g tương tự bài i
e) Từ 3a = 7b => \(\frac{a}{7}=\frac{b}{3}\)
Đặt \(k=\frac{a}{7}=\frac{b}{3}\Rightarrow\begin{cases}a=7k\\b=3k\end{cases}\)
Vì a2 - b2 = 160 => 49k2 - 9k2 = 160 => 40k2 = 160 => k = 2 hoặc -2
Với k = 2 => \(\begin{cases}a=14\\b=6\end{cases}\)
Với k = -2 => \(\begin{cases}a=-14\\b=-6\end{cases}\)
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+2b-3c}{2+6-12}=5\)
Vậy \(\frac{a}{2}=5\Rightarrow a=10\);\(\frac{b}{3}=5\Rightarrow b=15\);\(\frac{c}{4}=5\Rightarrow c=20\)
áp dụng tính chât của dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+2b+3c}{2+2.3+3.4}=\frac{-20}{20}=-1\)
suy ra:
\(\frac{a}{2}=-1\Rightarrow a=-2\)
\(\frac{b}{3}=-1\Rightarrow b=-3\)
\(\frac{c}{4}=-1\Rightarrow c=-4\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a-b+c}{2-3+4}=\frac{-49}{3}\)
=> a = \(\frac{-49}{3}.2=-\frac{98}{3}\)
b = \(\frac{-49}{3}.3=-49\)
c = \(\frac{-49}{3}.4=-\frac{196}{3}\)
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b}{2+3}=\frac{-15}{5}=-3\)(Vì a + b = -15)
=> a = -6 ; b = -9 ; c = -12
b) Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow\hept{\begin{cases}a=2k\\b=3k\\c=4k\end{cases}}\)
Khi đó a + 2b - 3c = -20
<=> 2k + 2.3k - 3.4k = -20
=> 2k + 6k - 12k = -20
=> -4k = -20
=> k = 5
=> a = 10 ; b = 15 ; c = 20