Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\\ =\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\\ =\frac{\sqrt{a}-1}{\sqrt{a}}\)
b) Ta có: \(A=\frac{\sqrt{a}-1}{\sqrt{a}}=\frac{\sqrt{a}}{\sqrt{a}}-\frac{1}{\sqrt{a}}=1-\frac{1}{\sqrt{a}}\)
Với mọi a>0 và a≠1 ta có \(\sqrt{a}>0\Leftrightarrow\frac{1}{\sqrt{a}}>0\)
\(\Rightarrow A=1-\frac{1}{\sqrt{a}}< 1\left(đpcm\right)\)
c)
\(A=1-\frac{1}{\sqrt{a}}=\frac{1}{2}\Leftrightarrow\frac{1}{\sqrt{a}}=\frac{1}{2}\Leftrightarrow\sqrt{a}=2\Leftrightarrow a=4\left(tm\right)\)
Vậy.......
\(P=\frac{a\left(\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}\right)}{\sqrt{\left(a-1\right)^2}}\)
\(=\frac{a\left(\sqrt{a-1}+1+\sqrt{a-1}-1\right)}{a-1}=\frac{2a\sqrt{a-1}}{a-1}=\frac{2a}{\sqrt{a-1}}\)
\(P-4=\frac{2a}{\sqrt{a-1}}-4=\frac{2\left(a-2\sqrt{a-1}\right)}{\sqrt{a-1}}=\frac{2\left(\sqrt{a-1}-1\right)^2}{\sqrt{a-1}}\ge0\)
\(\Rightarrow P\ge4\)
a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b, Ta có : \(A=\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
=> \(A=\left(\frac{x+2+\sqrt{x}\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{x\sqrt{x}-1}\right)\left(\frac{2}{\sqrt{x}-1}\right)\)
=> \(A=\left(\frac{x-2\sqrt{x}+1}{x\sqrt{x}-1}\right)\left(\frac{2}{\sqrt{x}-1}\right)\)
=> \(A=\frac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
=> \(A=\frac{2}{x+\sqrt{x}+1}\)
c, Ta có : \(A=\frac{2}{x+\sqrt{x}+1}=\frac{2}{\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}}\)
Ta thấy \(\frac{2}{\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}}>0\forall x\ne1\)
\(Q=\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\left(\sqrt{a}-1\right)+\sqrt{a}-1}\right)\)
\(=\frac{\sqrt{a}+1}{\sqrt{a}-1}\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right)=\frac{\sqrt{a}+1}{\sqrt{a}-1}\left(\frac{a+1}{\left(a+1\right)\left(\sqrt{a}-1\right)}-\frac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{\sqrt{a}+1}{\sqrt{a}-1}\left(\frac{a-2\sqrt{a}+1}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right)=\frac{\sqrt{a}+1}{\sqrt{a}-1}\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{\sqrt{a}+1}{a+1}\)
b/ Đề sai, đề đúng phải là \(a>1\) thì \(Q< 1\)
Do \(a>1\Rightarrow a>\sqrt{a}\Rightarrow\frac{\sqrt{a}+1}{a+1}< \frac{a+1}{a+1}=1\Rightarrow Q< 1\)
b/ Sửa đề chứng minh: \(\frac{5a-3b+2c}{a-b+c}>1\)
Theo đề bài ta có:
\(\hept{\begin{cases}f\left(-1\right)=a-b+c>0\left(1\right)\\f\left(-2\right)=4a-2b+c>0\left(2\right)\end{cases}}\)
Ta có: \(\frac{5a-3b+2c}{a-b+c}>1\)
\(\Leftrightarrow\frac{4a-2b+c}{a-b+c}>0\)
Mà theo (1) và (2) thì ta thấy cả tử và mẫu của biểu thức đều > 0 nên ta có ĐPCM