Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{2013}}\)
\(\Rightarrow3A-A=1-\frac{1}{3^{2014}}\)
\(\Rightarrow2A=1-\frac{1}{3^{2014}}\)
\(\Rightarrow A=\left(1-\frac{1}{3^{2014}}\right):2=\frac{1}{2}-\frac{1}{3^{2014}.2}=\frac{3^{2014}-1}{3^{2014}.2}\)
b.\(B=\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2014}}\)
\(\Rightarrow2B=1+\frac{1}{2^2}+....+\frac{1}{2^{2013}}\)
\(\Rightarrow2B-B=1-\frac{1}{2^{2014}}\)
\(\Rightarrow B=1-\frac{1}{2^{2014}}\)
Bạn nên nhớ các bài dạng dãy số này, sau này sẽ cần dùng rất nhiều:
Ta có: \(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\)
\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\right)\)
\(2A=2+1+\frac{1}{2}+..+\frac{1}{2^{2013}}\)
\(2A-A=\left(2+1+\frac{1}{2}+..+\frac{1}{2^{2013}}\right)\)\(-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\right)\)
\(A=2+\left(1+\frac{1}{2}+..+\frac{1}{2^{2013}}\right)\)\(-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\right)-\frac{1}{2^{2014}}\)
\(A=2-\frac{1}{2^{2014}}\)
Ta có:\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2013}}\)
\(\Leftrightarrow2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2013}}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2^{2014}}\right)\)
\(=2-\frac{1}{2^{2014}}=\frac{2^{2015}-1}{2^{2014}}\)
Vậy \(A=\frac{2^{2015}-1}{2^{2014}}\)
Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\)
=>\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)
=>\(A=2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\right)\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{2017}}\)
\(A=1+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{2^2}-\frac{1}{2^2}\right)+\left(\frac{1}{2^3}-\frac{1}{2^3}\right)+...+\left(\frac{1}{2^{2016}}-\frac{1}{2^{2016}}\right)-\frac{1}{2^{2017}}\)
\(A=1-\frac{1}{2^{2017}}\)
Vậy: \(A=1-\frac{1}{2^{2017}}\)
Bài 1: Tính giá trị các biểu thức:
1) \(A=\frac{2}{3}.\frac{2014}{2013}-\frac{2}{3}.\frac{1}{2013}+\frac{1}{3}\)
\(=\frac{2}{3}.\left(\frac{2014}{2013}-\frac{1}{2013}\right)+\frac{1}{3}\)
\(=\frac{2}{3}.1+\frac{1}{3}\)
= 1
2-2/19+2/43-2/1943
3-3/19+3/43-3/1943
=2(1-1/19+1/43-1/1943)
3(1-1/19+1/43-1/1943)
=2/3
Chúc bạn học tốt!!!!!
\(B=\frac{2012}{2013+2014}+\frac{2013}{2013+2014}< \frac{2012}{2013}+\frac{2013}{2014}\)
\(\Rightarrow A>B\)
\(B=\frac{2012+2013}{2013+2014}=\frac{2012}{2013+1014}+\frac{2013}{2013+1014}\)
Vì: \(\frac{2012}{2013+1014}< \frac{2012}{2013}\)và \(\frac{2013}{2013+2013}< \frac{2013}{2014}\)
\(\Rightarrow A>B\)
~ Rất vui vì giúp đc bn ~
b: \(B=2013+\dfrac{2013}{3}+\dfrac{2013}{6}+\dfrac{2013}{10}+\dfrac{2013}{15}\)
\(=2013\left(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}\right)\)
\(=4026\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\right)\)
\(=4026\cdot\dfrac{5}{6}=3355\)
=> 2S=........( cộng thêm 1 vào mỗi mũ)
=>2S-S=........( trừ những phần giống nhau cho nhau, còn 2 mũ 2015-2 )
=>S=2 mũ 2015-2
\(S=2+2^2+2^3+...+2^{2013}+2^{2014}\)
\(2S=2^2+2^3+2^4+...+2^{2014}+2^{2015}\)
\(2S-S=\left(2^2+2^3+...+2^{2014}+2^{2015}\right)-\left(2+2^2+2^3+...+2^{2014}\right)\)
\(S=2^{2015}-2\)
Ủng hộ mk nha !!! ^_^