K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2019

Mk cần trước 23 h nha. Ai nhanh mk cho 3 k

22 tháng 3 2019

Trên máy mk hiển thị , câu hỏi này 4 phút nữa mới chính thức xuất hiện ,,, máy bị j hay do câu hỏi ak ??

18 tháng 3 2018

a,Ta có: \(\frac{3}{10}=\frac{3}{10};\frac{3}{11}< \frac{3}{10};\frac{3}{12}< \frac{3}{10};\frac{3}{13}< \frac{3}{10};\frac{3}{14}< \frac{3}{10}\)

\(\Rightarrow S< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}=\frac{3}{2}=1,5\left(1\right)\)

Lại có: \(\frac{3}{10}>\frac{3}{15};\frac{3}{11}>\frac{3}{15};\frac{3}{12}>\frac{3}{15};\frac{3}{13}>\frac{3}{15};\frac{3}{14}>\frac{3}{15}\)

\(\Rightarrow S>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\left(2\right)\)

Từ (1) và (2) => 1 < S < 1,5 

Vậy...

b, \(A=\frac{1}{61}+\frac{1}{62}+...+\frac{1}{100}\)

\(=\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)+\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)

Ta có: \(\frac{1}{61}>\frac{1}{80};\frac{1}{62}>\frac{1}{80};...;\frac{1}{80}=\frac{1}{80}\)

\(\Rightarrow\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}=\frac{20}{80}=\frac{1}{4}\left(1\right)\)

Lại có: \(\frac{1}{81}>\frac{1}{100};\frac{1}{82}>\frac{1}{100};...;\frac{1}{100}=\frac{1}{100}\)

\(\Rightarrow\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{20}{100}=\frac{1}{5}\left(2\right)\)

Từ (1) và (2) => \(A>\frac{1}{4}+\frac{1}{5}=\frac{9}{20}\)

Vậy...

28 tháng 2 2016

* Ta có : \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)

=> \(S=3\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)\)

Ta có : \(\frac{1}{10}>\frac{1}{15};\frac{1}{11}>\frac{1}{15};\frac{1}{12}>\frac{1}{15};\frac{1}{13}>\frac{1}{15};\frac{1}{14}>\frac{1}{15}\)

=> \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}>\frac{1}{15}+\frac{1}{15}+...+\frac{1}{15}=\frac{5}{15}=\frac{1}{3}\)

=> \(S=3\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)>3.\frac{1}{3}=1\)

=> S >1     (1)

** Ta có : \(\frac{1}{11}<\frac{1}{10};\frac{1}{12}<\frac{1}{10};\frac{1}{13}<\frac{1}{10};\frac{1}{14}<\frac{1}{10}\)

=> \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}<\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{5}{10}=\frac{1}{2}\)

=> \(S=3\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)<3.\frac{1}{2}=\frac{3}{2}<\frac{4}{2}=2\)

=> S < 2     (2)

Từ (1) và (2) => 1 < S < 2 (đpcm)

28 tháng 2 2016

Vì \(\frac{3}{10}=\frac{3}{10};\frac{3}{11}<\frac{3}{10};\frac{3}{12}<\frac{3}{10};\frac{3}{13}<\frac{3}{10};\frac{3}{14}<\frac{3}{10}\)

\(\Rightarrow S<\frac{3}{10}.5\Rightarrow S<\frac{15}{10}\Rightarrow S<\frac{20}{10}\Rightarrow S<2\left(1\right)\)

Vì \(\frac{3}{10}>\frac{3}{14};\frac{3}{11}>\frac{3}{14};\frac{3}{12}>\frac{3}{14};\frac{3}{13}>\frac{3}{14};\frac{3}{14}=\frac{3}{14}\)

\(\Rightarrow S>\frac{3}{14}.5\Rightarrow S>\frac{15}{14}\Rightarrow S>1\left(2\right)\)

\(\left(1\right);\left(2\right)\Rightarrow1

=> S không phải là số tự nhiên

15 tháng 4 2018

\(b)\) Đặt \(B=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) ta có : 

\(B>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{3+3+3+3+3}{15}=\frac{3.5}{15}=\frac{15}{15}=1\)

\(\Rightarrow\)\(B>1\) \(\left(1\right)\)

Lại có : 

\(B< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{3+3+3+3+3}{10}=\frac{3.5}{10}=\frac{15}{10}< \frac{20}{10}=2\)

\(\Rightarrow\)\(B< 2\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(1< B< 2\) ( đpcm ) 

Vậy \(1< B< 2\)

Chúc bạn học tốt ~ 

15 tháng 4 2018

tra loi nhah giup m nha

1 tháng 3 2016

s=1,2

=>1<s<2

21 tháng 4 2016

bài bạn làm đúng tuy nhiên rất tắt

21 tháng 4 2016

bạn làm tắt quá!!!???

21 tháng 3 2018

\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)

ta có :

\(\frac{3}{10}>\frac{3}{15}\)

\(\frac{3}{11}>\frac{3}{15}\)

\(\frac{3}{12}>\frac{3}{15}\)

\(\frac{3}{13}>\frac{3}{15}\)

\(\frac{3}{14}>\frac{3}{15}\)

nên \(S>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}\)

\(\Rightarrow S>5\cdot\frac{3}{15}\)

\(\Rightarrow S>1\)    (1)

ta lại có :

\(\frac{3}{10}< \frac{3}{9}\)

\(\frac{3}{11}< \frac{3}{9}\)

\(\frac{3}{12}< \frac{3}{9}\)

\(\frac{3}{13}< \frac{3}{9}\)

\(\frac{3}{14}< \frac{3}{9}\)

nên \(S< \frac{3}{9}+\frac{3}{9}+\frac{3}{9}+\frac{3}{9}+\frac{3}{9}\)

\(\Rightarrow S< 5\cdot\frac{3}{9}\)

\(\Rightarrow S< \frac{15}{9}\)

\(\Rightarrow S< 1,66...< 2\) 

\(\Rightarrow S< 2\)    (2)

(1)(2) \(\Rightarrow1< S< 2\)

=> S không phải là số tự nhiên  (đpcm)

21 tháng 3 2018

a) Để B đạt giá trị nguyên thì

\(\Leftrightarrow10n⋮5n-3\)

\(\Rightarrow2\left(5n-3\right)+6⋮5n-3\)

\(\Rightarrow5n-3\inƯ\left(6\right)=\left\{-1;-2;-3;-6;1;2;3;6\right\}\)

Bạn lập bản ra làm tiếp nhé!

b) \(B=\frac{10n}{5n-3}=\frac{\left(10n-6\right)+6}{5n-3}=2+\frac{6}{5n-3}\)

\(\Rightarrow5n-3>0\)

\(\Rightarrow n>0\)và n=1

Thay n=1 ta có 5n-3=5*1-3=2

=>10n=10=>B=5

Vậy GTLN của B=5

Mik làm hơi tắt

                           

18 tháng 3 2018

Mk sẽ giải từng câu :) 

Bài 1 : 

Gọi \(ƯCLN\left(2n+2;6n+5\right)=d\)

\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\6n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(2n+2\right)⋮d\\2\left(6n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+12⋮d\\12n+10⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(12n+12\right)-\left(12n+10\right)⋮d\)

\(\Rightarrow\)\(2⋮d\)

\(\Rightarrow\)\(d\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

Mà \(6n+5\) không chia hết cho \(2\) và \(-2\) nên \(ƯCLN\left(2n+2;6n+5\right)=\left\{1;-1\right\}\)

Vậy \(\frac{2n+2}{6n+5}\) là phân số tối giản với mọi n 

Chúc bạn học tốt ~ 

18 tháng 3 2018

1. Gọi d = ƯCLN (2n+2,6n+5)

=>\(\hept{\begin{cases}2n+2\\6n+5\end{cases}}\)chia hết cho d

=>\(\hept{\begin{cases}3.\left(2n+2\right)\\6n+5\end{cases}}\)chia hết cho d

=>\(\hept{\begin{cases}6n+6^{\left(1\right)}\\6n+5^{\left(2\right)}\end{cases}}\)chia hết cho d

Từ (1) và (2) => (6n+6) - (6n+5) chia hết cho d

                     => 6n + 6 - 6n - 5 chia hết cho d

                     => 1 chia hết cho d

                    => d =1

=>  ƯCLN (2n+2,6n+5) = 1

 Vậy \(\frac{2n+2}{6n+5}\) là phân số tối giản

2. Ta có:

B = 32. (\(\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}+...+\frac{3}{67.70}\))

B = 32. (\(\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+...+\frac{1}{67}-\frac{1}{70}\))

B = 32. (\(\frac{1}{10}-\frac{1}{70}\))

B = 27/35

\(\frac{27}{35}< 1\)

=> B < 1

3.      x + \(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{-37}{45}\)

         x + ( \(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}=\frac{-37}{45}\)

         x + (\(\frac{1}{5}-\frac{1}{45}\)) = \(\frac{-37}{45}\)

         x + \(\frac{8}{45}=\frac{-37}{45}\)

                      x = \(\frac{-37}{45}-\frac{8}{45}\)

                      x = -1

22 tháng 4 2016

giải: s>\(\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\)

s<\(\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}<\frac{20}{10}=2\)

vậy 1<s<2

=> s không phải là N