Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
2)
Đặt \(A=x^3-y^3-36xy\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-36xy\)
\(=\left(x-y\right)\left[\left(x-y\right)^2+3xy\right]\)
\(=12.12^2+3.12xy-36xy\)
\(=12^3\)
#)Giải :
1)
Ta có \(x+y=-5\Rightarrow\left(x+y\right)^2=x^2+y^2+2xy=\left(-5\right)^2=25\)
\(\Rightarrow2xy=25-11=14\)
\(\Rightarrow xy=7\)
\(\Rightarrow2xy.xy=2x^2.y^2=14.7=98\)
\(\left(x^2+y^2\right)^2=11^2=121\)
\(\Rightarrow\left(x^4+y^4\right)+98=121\)
\(\Rightarrow x^4+y^4=23\)
1.Theo đầu bài ta có:
\(A=x\left(x+2\right)+y\left(y-2\right)-2xy\)
\(=\left(x^2+2x\right)+\left(y^2-2y\right)-2xy\)
\(=\left(x^2+y^2-2xy\right)+\left(2x-2y\right)\)
\(=\left(x-y\right)^2+2\left(x-y\right)\)
Do x - y = 7 nên:
\(=7^2+2\cdot7\)
\(=49+14\)
\(=63\)
Bài 2. Câu 1:
Đặt A = x2 + y2. Khi đó:
\(A-2xy=x^2+y^2-2xy\)
\(\Rightarrow A-2xy=\left(x-y\right)^2\)
Do xy = 4 ; x - y = 3 nên:
\(\Rightarrow A-2\cdot4=3^2\)
\(\Rightarrow A-8=9\)
\(\Rightarrow A=17\)
a) Ta có:\(\left(x+y\right)^2=5^2\)(Vì x + y = 5)
\(\Leftrightarrow x^2+2xy+y^2=25\)
\(\Leftrightarrow x^2+2.4+y^2=25\)
\(\Leftrightarrow x^2+8+y^2=25\)
\(\Leftrightarrow x^2+y^2=17\)
b) \(\left(x+y\right)^2=3^2\)(Vì x + y = 3)
\(\Leftrightarrow x^2+2xy+y^2=9\)
\(\Leftrightarrow2xy+5=9\)
\(\Leftrightarrow2xy=4\)
\(\Leftrightarrow xy=2\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=3\left(5-2\right)=9\)
a) ta có:(x+y)2=x2+2xy+y2=>x2+y2=(x+y)2-2xy
thay x+y=5;xy=4 vào biểu thức ta có:
52-2×4=25-8=17
P = ( xy + 1 ) ( x2y2 - xyt + 1 )
= x3y3 + 1
= \(\left(5.\frac{3}{5}\right)^3+1\)
= \(27+1\)
= 28
a) Ta có x + y = 25
=> (x + y)2 = 625
=> x2 + y2 + 2xy = 625
=> x2 + y2 + 10 = 625
=> x2 +y2 = 615
b) Ta có x + y = 3
=> (x + y)3 = 27
=> x3 + 3x2y + 3xy2 + y3 = 27
=> x3 + y3 + 3xy(x + y) = 27
=> x3 + y3 + 9xy = 27
Lại có x + y = 3
=> (x + y)2 = 9
=> x2 + y2 + 2xy = 9
=> 2xy = 4
=> xy = 2
Khi đó x3 + y3 + 9xy + 27
=> x3 + y3 + 18 = 27
=> x3 + y3 = 9
c) Ta có x - y = 5
=> (x - y)2 = 25
=> x2 + y2 - 2xy = 25
=> 2xy = -10
=> xy = -5
Khi đó : x3 - y3 = (x - y)(x2 + xy + y2) = 5(15 - 5) = 5.10 = 50
Bài 4.
a) x2 + y2 = x2 + 2xy + y2 - 2xy
= ( x2 + 2xy + y2 ) - 2xy
= ( x + y )2 - 2xy
= 252 - 2.136
= 625 - 272
= 353
b) x + y = 3
⇔ ( x + y )2 = 9
⇔ x2 + 2xy + y2 = 9
⇔ 5 + 2xy = 9 ( gt x2 + y2 = 5 )
⇔ 2xy = 4
⇔ xy = 2
x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )
= ( x + y )3 - 3xy( x + y )
= 33 - 3.2.3
= 27 - 18
= 9
Ta có: x + y = -5 <=> (x + y)2 = (-5)2 = 25
hay: x2 + 2xy + y2 = 25 <=> 2xy = 25 - (x2 + y2) <=> 2xy = 25 - 11 <=> 2xy = 14 <=> xy = 7
=> 2x2y2 = 2 . (xy)2 = 2 . 72 = 98
Mặt khác: (x2 + y2)2 = 112 = 121
<=> x4 + 2x2y2 + y4 = 121
<=> x4 + y4 = 121 - 2x2y2
<=> x4 + y4 = 121 - 98
<=> x4 + y4 = 23
Vậy B = 23
x+y = -5 => (x + y)^2= x^2+y^2+2xy= (-5)^2= 25
=>2xy = 25 - 11 = 14
=>xy = 7
=>2xy.xy = 2x^2.y^2 = 14.7 =98
Ta có: (x^2 + y^2)^2 = 11^2 =121
x^4 + 2x^2.y^2 + y^4 =121
=>(x^4+y^4) + 98 =121
x^4 + y^4 = 23