Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Để N có giá trị nguyên thì căn x-5 EƯ(9)={1;-1;3;-3;9;-9}
=>căn x E{6;4;8;2;14;-4}
=>xE{36;24;64;4;196;16}
Vậy để N có giá trị nguyên thì x E{36;24;64;4;196;16}
A B C 1 2 D E a) Xét hai tam giác ABD và AED có:
AB = AE (gt)
\(\widehat{A_1}=\widehat{A_2}\) (gt)
AD: cạnh chung
Vậy: \(\Delta ABD=\Delta AED\left(c-g-c\right)\)
Suy ra: BD = DE (hai cạnh tương ứng)
b) Ta có: AD = AE (gt)
\(\Rightarrow\) \(\Delta ABE\) cân tại A
\(\Delta ABE\) cân tại A có AD là đường phân giác đồng thời là đường trung trực
Do đó: BE là đường trung trực của đoạn thẳng BE
1) \(2VT=\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2ab+2bc+2ac=2\left(ab+bc+ac\right)=2VP\)
\(VT\ge VP\)
2) \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ab}}=2\)
Phần c đơn giản lắm :) Vừa nghĩ ra tiếp :
Ta có :
- \(4.\left(S_{ABC}\right)^2=\left(2.S_{ABC}\right)^2\)
\(\Rightarrow\left(AB.AC\right)^2=\left(AH.BC\right)^2\)
\(\Rightarrow AB^2.AC^2=AH^2.BC^2\)
Mà \(BC^2=AB^2+AC^2\)( Pythagores )
\(\Rightarrow AB^2.AC^2=AH^2\left(AB^2+AC^2\right)\)
\(\Rightarrow\frac{1}{AH^2}=\frac{AB^2+BC^2}{AB^2.AC^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
Vậy...
Ngồi nháp rồi nghĩ ra phần a :) Sẽ cập nhật khi nghĩ được b , c
[ Tự vẽ hình ]
Áp dụng định lý Pythagores có :
- \(AB^2+AC^2=BC^2\)
- \(AH^2=AC^2-HC^2=AB^2-BH^2\)
\(\Rightarrow AH^2=\frac{AC^2-HC^2+AB^2-HB^2}{2}\)
\(=\frac{\left(AB^2+AC^2\right)-\left(HB^2+HC^2+2HB.HC\right)+2HB.HC}{2}\)
\(=\frac{BC^2-\left(HB+HC\right)^2+2HB.HC}{2}\)
\(=\frac{BC^2-BC^2+2HB.HC}{2}\)
\(=\frac{2HB.HC}{2}\)
\(=HB.HC\)
Vậy \(AH^2=HB.HC.\)
wow giỏi vậy