\(\sqrt{2}\)) =0 có tất cả bao nh...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 8 2020

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\sqrt{2}>1\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow x=-\frac{\pi}{2}+k2\pi\)

\(-2017\le-\frac{\pi}{2}+k2\pi\le2017\)

\(\Rightarrow\frac{-2017+\frac{\pi}{2}}{2\pi}\le k\le\frac{2017+\frac{\pi}{2}}{2\pi}\)

Do k nguyên nên \(-320\le k\le321\)

\(321-\left(-320\right)+1=642\) nghiệm

1 tháng 10 2019

(sinx+1)(sinx-\(\sqrt{2}\))=0⇔\(\left[{}\begin{matrix}sinx=-1\\sinx=\sqrt{2}\left(loai\right)\end{matrix}\right.\Leftrightarrow\sin x=\frac{-\pi}{2}+2k\pi\)\(-2017\le x\le2017\)\(\Leftrightarrow-320\le k\le321\)

có 642 số

17 tháng 8 2019

1/ ĐKXĐ: \(\cos2x\ne0\)

\(\frac{\cos4x}{\cos2x}=\frac{\sin2x}{\cos2x}\)\(\Leftrightarrow\cos4x-\sin2x=0\)

\(\Leftrightarrow2\cos^22x-1-\sin2x=0\)

\(\Leftrightarrow2-2\sin^22x-1-\sin2x=0\)

\(\Leftrightarrow2\sin^22x+\sin2x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=\frac{1}{2}=\sin\frac{\pi}{6}\\\sin2x=-1=\sin\frac{-\pi}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{6}+2k\pi\\2x=\frac{5\pi}{6}+2k\pi\\2x=\frac{-\pi}{2}+2k\pi\left(l\right)\\2x=\frac{3\pi}{2}+2k\pi\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)

17 tháng 8 2019

2/ \(\sin2.4x+\cos4x=1+2\sin2x.\cos\left(2x+4x\right)\)

\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+2\sin2x.\left(\cos2x.\cos4x-\sin2x.\sin4x\right)\)

\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+2\sin2x.\cos2x.\cos4x-2\sin^22x.\sin4x\)

\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+\sin4x.\cos4x-\sin4x+\cos4x.\sin4x\)

Đến đây bn tự giải nốt nhé, lm kiểu bthg thôi bởi vì đã quy về hết sin4x và cos4x r

1, phương trình 2sin^2x-5sinxcosx-cos^2x=-2 tương đương vs pt nào sau đây A. 3cos2x-5sin2x=5 B.3cos2x+5sin2x=-5 C. 3cos2x-5sin2x=-5 D. 3cos2x+5sin2x=5 2, Phương trình 2m cos(\(\frac{9\pi}{2}\)-x)+(3m-2)sin(5\(\pi\)-x)+4m-3=0 có đúng 1 nghiệm x\(\in\)[-\(\pi\)/6;5pi/6] 3, Để phương trình 2\(\sqrt{3}\) cos^2x+6sinxcosx=m+\(\sqrt{3}\) có 2 nghiệm trong khỏng (0;pi)thì giá trị của m là 4, Tìm tất cả giá trị của...
Đọc tiếp

1, phương trình 2sin^2x-5sinxcosx-cos^2x=-2 tương đương vs pt nào sau đây

A. 3cos2x-5sin2x=5 B.3cos2x+5sin2x=-5 C. 3cos2x-5sin2x=-5 D. 3cos2x+5sin2x=5

2, Phương trình 2m cos(\(\frac{9\pi}{2}\)-x)+(3m-2)sin(5\(\pi\)-x)+4m-3=0 có đúng 1 nghiệm x\(\in\)[-\(\pi\)/6;5pi/6]

3, Để phương trình 2\(\sqrt{3}\) cos^2x+6sinxcosx=m+\(\sqrt{3}\) có 2 nghiệm trong khỏng (0;pi)thì giá trị của m là

4, Tìm tất cả giá trị của tham số m để phương trình sin^2x+2(m+1)sinx-3m(m-2)=0 có nghiệm

5, Số nghiệm thuộc (0;pi) của phương trình sinx+\(\sqrt{1+cos^2x}\)=2(cos\(^2\)3x+1) là

6, Tìm m để phương trình (cosx+1)(cos2x-mcosx)=msin^2x có đúng 2 nghiệm x\(\in\)[0;2pi/3]

7, gpt \(\sqrt{3}\) tan^2x-2tanx-căn3=0

8, Tìm giá trị m để phương trình 5sinx-m=tan^2x(sinx-1)có đúng 3 nghiệm thuộc (-pi;pi/2)

9, Có bao nhiêu giá trị nguyên của m để pt cos2x+sinx+m=0 có nghiệm x\(\in\) [-pi/6;pi/4]

10, tìm GTNN và GTLN của

a, y=4\(\sqrt{sinx+3}\) -1 b, y=\(\frac{12}{7-4sinx}\) trên đoạn[-pi/6;5pi/6] c, y=2cos^2x-sin2x+5

d, y=sinx+cos2x trên đoạn [0;pi]

11, Tìm số nghiệm của phương trình sin(cosx)=0 trên đoạn x[o;2pi]

12, Tính tổng các nghiệm của phương trình cos\(^2\) x-sin2x=\(\sqrt{2}\) +cos\(^2\) (\(\frac{\pi}{2}\) +x) trên khoảng(0;2pi)

13, nghiệm của pt \(\frac{sin2x+2cosx-sinx-1}{tanx+\sqrt{3}}\)=0 được biểu diễn bởi mấy điểm trên đường tròn lượng giác

14, giải pt cotx-tanx=\(\frac{2cos4x}{sin2x}\)

15, tìm m để pt (sinx-1)(cos^2x -cosx+m)=0 có đúng 5 nghiệm thuộc đoạn [0;2pi]

0
NV
1 tháng 8 2020

Số âm càng lớn thì trị tuyệt đối càng nhỏ, do đó ta chỉ cần tìm k lớn nhất sao cho nghiệm x âm

Để khỏi nhầm lẫn thì 2 tham số 1 cái đặt là k 1 cái đặt là n đi

Tìm nghiệm âm: \(\left[{}\begin{matrix}\frac{7\pi}{36}+\frac{k2\pi}{3}< 0\\\frac{11\pi}{36}+\frac{n2\pi}{3}< 0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}k< -\frac{7}{24}\\n< -\frac{11}{24}\end{matrix}\right.\) mà k; n nguyên \(\Rightarrow k=n=-1\)

Thay vào nghiệm của pt: \(\left[{}\begin{matrix}x=\frac{7\pi}{36}-\frac{2\pi}{3}=-\frac{17\pi}{36}\\x=\frac{11\pi}{36}-\frac{2\pi}{3}=-\frac{13\pi}{36}\end{matrix}\right.\)

So sánh 2 nghiệm này ta thấy \(-\frac{13\pi}{36}>-\frac{17\pi}{36}\) nên \(x=-\frac{13\pi}{36}\) là nghiệm âm lớn nhất của pt

NV
31 tháng 7 2020

21.

\(\Leftrightarrow\left[{}\begin{matrix}sinx+1=0\\sinx-\sqrt{2}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\sqrt{2}>1\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)

\(x\in\left[-2017;2017\right]\Rightarrow-2017\le-\frac{\pi}{2}+k2\pi\le2017\)

\(\Rightarrow\frac{\frac{\pi}{2}-2017}{2\pi}\le k\le\frac{\frac{\pi}{2}+2017}{2\pi}\)

\(\Rightarrow-320\le k\le321\) \(\Rightarrow\) pt có 642 nghiệm

22.

\(sin\left(3x-\frac{\pi}{4}\right)=\frac{\sqrt{3}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}3x-\frac{\pi}{4}=\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{4}=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{7\pi}{36}+\frac{k2\pi}{3}\\x=\frac{11\pi}{36}+\frac{k2\pi}{3}\end{matrix}\right.\)

\(\Rightarrow\) Nghiệm âm lớn nhất \(x=-\frac{13\pi}{36}\) ; nghiệm dương nhỏ nhất \(x=\frac{7\pi}{36}\)

Tổng 2 nghiệm: \(-\frac{13\pi}{36}+\frac{7\pi}{36}=-\frac{\pi}{6}\)

NV
28 tháng 10 2020

d.

\(\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=\sqrt{2}\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=1\)

\(\Leftrightarrow x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+k2\pi\)

e.

\(\Leftrightarrow cosx.cos\left(\frac{\pi}{12}\right)-sinx.sin\left(\frac{\pi}{12}\right)=\frac{1}{2}\)

\(\Leftrightarrow cos\left(x+\frac{\pi}{12}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{12}=\frac{\pi}{3}+k2\pi\\x+\frac{\pi}{12}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

NV
28 tháng 10 2020

2.a.

ĐKXĐ: ...

\(\sqrt{3}tanx-\frac{6}{tanx}+2\sqrt{3}-3=0\)

\(\Leftrightarrow\sqrt{3}tan^2x+\left(2\sqrt{3}-3\right)tanx-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-2\\tanx=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-2\right)+k\pi\\x=\frac{\pi}{3}+k\pi\end{matrix}\right.\)

b.

ĐKXĐ: \(x\ne k\pi\)

\(1-sin2x=2sin^2x\)

\(\Leftrightarrow1-2sin^2x-sin2x=0\)

\(\Leftrightarrow cos2x-sin2x=0\)

\(\Leftrightarrow cos\left(2x+\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow...\)

NV
4 tháng 10 2020

\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=\sqrt{2}cos3x\)

\(\Leftrightarrow cos3x=sin\left(x+\frac{\pi}{4}\right)\)

\(\Leftrightarrow cos3x=cos\left(\frac{\pi}{4}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=\frac{\pi}{4}-x+k2\pi\\3x=x-\frac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{16}+\frac{k\pi}{2}\\x=-\frac{\pi}{8}+k\pi\end{matrix}\right.\)

\(\Rightarrow x=\left\{\frac{\pi}{16};\frac{9\pi}{16};\frac{7\pi}{8}\right\}\)