Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-2x< 7\Leftrightarrow x>-3,5\)
\(\left(x-1\right)\left(x-2\right)>0\Leftrightarrow x^2-3x+2>0\Leftrightarrow x^2-3x+\frac{9}{4}>\frac{1}{4}\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2>\frac{1}{4}\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{2}>\frac{1}{2}\\x-\frac{3}{2}< -\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>2\\x< 1\end{cases}}\)
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
a) \(\left(x+1\right)\left(x-2\right)< 0\) khi 2 thừa số trái dấu
TH1: \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Leftrightarrow}-1< x< 2\left(chon\right)}\)
TH2: \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}\Leftrightarrow}2< x< -1\left(loai\right)}\)
Vậy \(-1< x< 2\)( tự tìm x )
b) \(\left(x-1\right)\left(x+3\right)>0\)khi 2 thừa số cùng dấu
TH1: \(\hept{\begin{cases}x-1>0\\x+3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x>-3\end{cases}\Leftrightarrow}x>1}\)
TH2: \(\hept{\begin{cases}x-1< 0\\x+3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< -3\end{cases}\Leftrightarrow}x< -3}\)
Vậy hoặc x > 1 hoặc x < -3 thì thỏa mãn
\(a,\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow}-1< x< 2\left(tm\right)}\)
\(\Rightarrow\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}\Rightarrow}2< x< -1\left(KTM\right)}\)
Để ( x + 1 )( x - 2 ) < 0
<=> x + 1 và x - 2 trái dấu nhau
Mà x + 1 lớn hơn x - 2 ( điều này luôn luôn đúng với mọi x )
=> x + 1 > 0
x - 2 < 0
=> x > 0 - 1
x < 0 + 2
=> x > -1
x < 2
=> -1 < x < 2
Vậy x = 0 ; 1
\(\left(x+1\right)\left(x+2\right)< 0\)
\(\Leftrightarrow x^2-x-2< 0\)
Xét dấu \(f\left(x\right)=x^2-x-2\)
\(\Rightarrow f\left(x\right)< 0\) khi \(-1< x< 2\)