≤‍ x ≤‍2011 và p...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2015

Bạn viết thiếu rồi!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

18 tháng 7 2019

1,

x-2/ 15=27/15

=>x-2=27

x=29

18 tháng 7 2019

#)Giải :

1.

\(\frac{x-2}{15}=\frac{9}{5}\Leftrightarrow x-2=\frac{9}{5}.15=27\Leftrightarrow x=29\)

\(\frac{2-x}{16}=\frac{-4}{x-2}\Leftrightarrow2-2x-2=\left(-4\right).16=-64\Leftrightarrow x\left(2-2\right)=-64\Leftrightarrow x.0=64\)

P/s : Câu thứ hai cứ sao sao ý 

cho a,b thuộc n* và a/b tối giản .CMR :\(\frac{a}{a+b}\)tối giảntìm tất cả các số nguyên tố p sao cho p+2 và p+4laf số nguyên tố cho đương thẳng cy đi qua O .Trên cùng 1 nửa mặt phẳng bờ xy kẻ O z Ot sao cho \(\widehat{xOy}=130^0,\widehat{yOt}=100^0\)a)CMROz là tia phân giác \(\widehat{yOt}\)b)gọi Om là tia phân giác \(\widehat{zOt}\).tính \(\widehat{mOy}\)10 tìm số tự nhiên x sao...
Đọc tiếp

cho a,b thuộc n* và a/b tối giản .CMR :\(\frac{a}{a+b}\)tối giản

tìm tất cả các số nguyên tố p sao cho p+2 và p+4laf số nguyên tố 

cho đương thẳng cy đi qua O .Trên cùng 1 nửa mặt phẳng bờ xy kẻ O z Ot sao cho \(\widehat{xOy}=130^0,\widehat{yOt}=100^0\)

a)CMROz là tia phân giác \(\widehat{yOt}\)

b)gọi Om là tia phân giác \(\widehat{zOt}\).tính \(\widehat{mOy}\)

10 tìm số tự nhiên x sao cho:

\(\left(x-5\right)\frac{30}{100}=\frac{20x}{100}+5\)

11 tìm giá terij nguyên của n   để đạt GTLN

a|)D=\(\frac{n+1}{n-2}\)

b)\(\frac{1}{7-n}\)

c)\(\frac{27-2n}{12-n}\)

12 tìm giá trị nguyên của x để biểu thức sau có GTLN

a)A=\(\frac{1}{x-3}\)

b)\(\frac{7-x}{x-5}\)

c)\(\frac{5x+13}{x-4}\)

tí nữa mong các bn giải hộ ai làm đc hết mk tick cho 10 tik còn ai làm đầu tiên của mỗi bài thì đc 1 tik thôi

nhanh lên hộ tôi vs

từ lớp 7 trở lên mk ko làm đc học lại lớp 6

0
22 tháng 5 2016

2006 = 2.17.59
Để q chia hết cho 2006 thì n(n+1)...(n+9) chia hết cho 2006
Với n<50 thì n, (n+1), ... (n+9) < 59 nên ko thoả mãn.
Với n=50: thì n+1 = 51 chia hết cho 17; n+9=59 chia hết cho 59
suy ra n(n+1)...(n+9) chia hết cho 2006

* Ta sẽ chứng minh n=50 là số tự nhiên nhỏ nhất thoả mãn.
- Đặt S = 1/50 + 1/51 + ... + 1/59
1/50 + 1/51 + ... + 1/58 = A/B (trong đó B ko chia hết 59)
suy ra: S = A/B + 1/59 = (59A + B)/59B = p/q
hay (59A + B)q = 59Bp hay Bq = 59(Bp - Aq)
Do B ko chia hết 59 suy ra q chia hết 59.

- Đặt 1/50 + 1/52 + ... + 1/58 = C/D ta cũng có D ko chia hết cho 17
Chứng minh tương tự suy ra q chia hết cho 59, 17, 2
suy ra (đpcm

2006 = 2.17.59
Để q chia hết cho 2006 thì n(n+1)...(n+9) chia hết cho 2006
Với n<50 thì n, (n+1), ... (n+9) < 59 nên ko thoả mãn.
Với n=50: thì n+1 = 51 chia hết cho 17; n+9=59 chia hết cho 59
suy ra n(n+1)...(n+9) chia hết cho 2006

* Ta sẽ chứng minh n=50 là số tự nhiên nhỏ nhất thoả mãn.
- Đặt S = 1/50 + 1/51 + ... + 1/59
1/50 + 1/51 + ... + 1/58 = A/B (trong đó B ko chia hết 59)
suy ra: S = A/B + 1/59 = (59A + B)/59B = p/q
hay (59A + B)q = 59Bp hay Bq = 59(Bp - Aq)
Do B ko chia hết 59 suy ra q chia hết 59.

- Đặt 1/50 + 1/52 + ... + 1/58 = C/D ta cũng có D ko chia hết cho 17
Chứng minh tương tự suy ra q chia hết cho 59, 17, 2
suy ra (đpcm

21 tháng 6 2019

Bài 1:

a) \(x=\frac{a+1}{a+9}=\frac{a+9-8}{a+9}=\frac{a+9}{a+9}-\frac{8}{a+9}=1-\frac{8}{a+9}\)

Để \(x\in Z\)thì \(a+9\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

Vậy \(a\in\left\{-17;-13;-11;-10;-8;-7;-5;-1\right\}\)

b) \(x=\frac{a-1}{a+4}=\frac{a+4-5}{a+4}=\frac{a+4}{a+4}-\frac{5}{a+4}=1-\frac{5}{a+4}\)

Để \(x\in Z\)thì \(a+4\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Vậy \(a\in\left\{-9;-5;-3;1\right\}\)

Bài 2:

a) \(t=\frac{3x-8}{x-5}=\frac{3x-15}{x-5}+\frac{7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)

Để \(t\in Z\)thì \(x-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-2;4;6;12\right\}\)

b)\(q=\frac{2x+1}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}=\frac{2\left(x-3\right)}{x-3}+\frac{7}{\left(x-3\right)}=2+\frac{7}{x-3}\)

Để \(q\in Z\)thì \(x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-4;2;4;10\right\}\)

c)\(p=\frac{3x-2}{x+3}=\frac{3x+9}{x+3}-\frac{11}{x+3}=\frac{3\left(x+3\right)}{x+3}-\frac{11}{x+3}=3-\frac{11}{x+3}\)

Để \(p\in Z\)thì \(x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)

Vậy \(x\in\left\{-14;-4;-2;8\right\}\)

Bài 3:

Gọi \(d\inƯC\left(2m+9;14m+62\right)\)

\(\Rightarrow\hept{\begin{cases}\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(14m+63\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\left[\left(14m+63\right)-\left(14m+62\right)\right]⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯC\left(2m+9;14m+62\right)=1\)

Vậy \(x=\frac{2m+9}{14m+62}\)là p/s tối giản