Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}=\frac{y^2-x^2+y^2+x^2}{3+5}=\frac{y^2+y^2}{8}=\frac{2y^2}{8}\)
\(\Rightarrow\frac{y^2-x^2}{3}=\frac{2y^2}{8}\)
\(\Rightarrow\frac{y^2-x^2}{3}=\frac{y^2}{4}\)
\(\Rightarrow4y^2-4x^2=3y^2\)
\(\Rightarrow4y^2-3y^2=4x^2\)
\(\Rightarrow y^2=4x^2\)
Thế vào \(x^{10}.y^{10}=1024\), ta có:
\(x^{10}.\left(y^2\right)^5=1024\)
\(x^{10}.\left(4x^2\right)^5=1024\)
\(\Rightarrow1024.x^{10}.x^{10}=1024\) ( cái này thì ko chắc )
\(\Rightarrow x^{20}=1\)
\(\Rightarrow x=1;x=-1\)
\(\Rightarrow y=2;y=-2\)
Vậy có 2 cặp ( x ; y ) thỏa mãn.
\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}\)( từ đây ta thấy \(y^2-x^2;y^2+x^2\)cùng dấu )
\(\Rightarrow5y^2-5x^2=3y^2+3x^2\)
\(2y^2=8x^2\)
\(y^2=\left(2x\right)^2\)
\(\Rightarrow\left[\begin{array}{nghiempt}y=2x\\y=-2x\end{array}\right.\)
\(x^{10}y^{10}=1024\Rightarrow\left[\begin{array}{nghiempt}xy=2\\xy=-2\end{array}\right.\)
Với \(xy=2\)
\(+y=2x\Rightarrow\left(x;y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)
\(+y=-2x\Rightarrow\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)
Với \(xy=-2\)
\(+y=2x\Rightarrow\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)
\(+y=-2x\Rightarrow\left(x;y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)
Tóm lại ta có :
\(\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right);\left(2;1\right);\left(-2;-1\right)\right\}\)
Ta có: \(\frac{3x}{4}\)= \(\frac{y}{2}\)= \(\frac{3z}{5}\)
=> \(\frac{1}{3}.\frac{3x}{4}=\frac{1}{3}.\frac{y}{2}=\frac{1}{3}.\frac{3z}{5}\)
\(\Rightarrow\frac{3x}{12}=\frac{y}{6}=\frac{3z}{15}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{5}=\frac{y-z}{6-5}=15\)
Suy ra:
- x = 15.4=60
- y=15.6=90
- z=15.5=75
\(\Rightarrow\)x + y + z = 225
Bài 2:
TH1: \(x\le-\frac{5}{2}\)
<=>\(-\left(x+\frac{5}{2}\right)+\frac{2}{5}-x=0\)<=>\(-x-\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(-\frac{21}{10}-2x=0\)
<=>\(-2x=\frac{21}{10}\)<=>\(x=\frac{-21}{20}\)(loại)
TH2: \(-\frac{5}{2}< x\le\frac{2}{5}\)
<=>\(x+\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(\frac{29}{10}=0\)(loại)
TH3: \(x>\frac{2}{5}\)
<=>\(x+\frac{5}{2}+x-\frac{2}{5}=0\)<=>\(2x+\frac{21}{10}=0\)<=>\(2x=-\frac{21}{10}\)<=>\(x=-\frac{21}{20}\)(loại)
Vậy không có số x thỏa mãn đề bài
Bài 1:
Vì \(\left(x-2\right)^2\ge0\) nên\(\left(x-2\right)^2\le0\) khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Bài 3:
Đặt \(\frac{x}{15}=\frac{y}{9}=k\Rightarrow\hept{\begin{cases}x=15k\\y=9k\end{cases}}\)
Theo đề bài: xy=15 <=> 15k.9k=135k2=15 <=> k2=1/9 <=> k=-1/3 hoặc k=1/3
+) \(k=-\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\left(-\frac{1}{3}\right).15=-5\\y=\left(-\frac{1}{3}\right).9=-3\end{cases}}\)
+) \(k=\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.15=5\\y=\frac{1}{3}.9=3\end{cases}}\)
Vậy ...........
1. \(\frac{x}{y}=\frac{7}{17}\)
3. Có 6 cặp
4. 0 có cặp nào hết
Câu 2 mình không biết nha. Thông cảm