K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

Ta có:

                           \(2x^2+y^2-3xy+2x-y=0\)

                \(2x^2+y^2-2xy-xy+2x-y=0\)

\(\left(2x^2-2xy\right)+\left(y^2-xy\right)+\left(2x+y\right)=0\)

  \(2x\left(x-y\right)-y\left(-y+x\right)+\left(2x-y\right)=0\)

                 \(\left(x-y\right)\left(2x-y\right)+\left(2x-y\right)=0\)

                                 \(\left(2x-y\right)\left(x-y-1\right)=0\)

Em chuyển cho chị về tích rồi đấy

1 tháng 1 2018

ĐKXĐ: \(x\ne-1\)
\(\frac{1}{\sqrt{x^2+3}}+\frac{1}{\sqrt{1+3x^2}}=\frac{2}{x+1}\)
\(\Leftrightarrow\frac{x+1}{\sqrt{x^2+3}}-1+\frac{x+1}{\sqrt{3x^2+1}}-1=0\)
\(\Leftrightarrow\frac{x+1-\sqrt{x^2+3}}{\sqrt{x^2+3}}+\frac{x+1-\sqrt{3x^2+1}}{\sqrt{3x^2+1}}=0\)
\(\Leftrightarrow\frac{x^2+2x+1-x^2-3}{\sqrt{x^2+3}\left(x+1+\sqrt{x^2+3}\right)}+\frac{x^2+2x+1-3x^2-1}{\sqrt{3x^2+1}\left(x+1+\sqrt{3x^2+1}\right)}=0\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\sqrt{x^2+3}\left(x+1+\sqrt{x^2+3}\right)}+\frac{-2x\left(x-1\right)}{\sqrt{3x^2+1}\left(x+1+\sqrt{3x^2+1}\right)}=0\)
\(\Leftrightarrow2\left(x-1\right)\left(\frac{1}{\sqrt{x^2+3}\left(x+1+\sqrt{x^2+3}\right)}-\frac{1}{\sqrt{\frac{1}{x^2}+3}\left(\frac{1}{x}+1+\sqrt{\frac{1}{x^2}+3}\right)}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\\sqrt{x^2+3}\left(x+1+\sqrt{x^2+3}\right)=\sqrt{\frac{1}{x^2}+3}\left(\frac{1}{x}+1+\sqrt{\frac{1}{x^2}+3}\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2=\frac{1}{x^2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(tmđkxđ\right)\\x=-1\left(ktmđkxđ\right)\end{cases}\Rightarrow}x=1}\)
Vậy nghiệm của pt trên là x=1

1 tháng 1 2018

Xét tử:
\(2\sqrt{1-3x}+\sqrt[3]{x+9}-2=2\left(\sqrt{1-3x}+\frac{3x-5}{4}\right)+\left(\sqrt[3]{x+9}-\frac{-3x+1}{2}\right)\)
\(=2.\frac{1-3x-\frac{9x+25-30x}{16}}{\sqrt{1-3x}-\frac{3x-5}{4}}+\frac{x+9-\left(\frac{-3x+1}{2}\right)^3}{\sqrt[3]{\left(x+9\right)^2}+\sqrt[3]{x+9}.\frac{-3x+1}{2}+\left(\frac{-3x+1}{2}\right)^2}\)
\(=\frac{-18\left(x+1\right)^2}{\sqrt{1-3x}-\frac{3x-5}{4}}+\frac{\frac{\left(x+1\right)\left(27x^2-54x+71\right)}{8}}{\sqrt[3]{\left(x+9\right)^2}+\sqrt[3]{x+9}.\frac{-3x+1}{2}+\left(\frac{-3x+1}{2}\right)^2}\)
Xét mẫu : x2-2x-3=(x+1)(x-3)
\(\Rightarrow A=\frac{\frac{-18\left(x+1\right)}{\sqrt{1-3x}-\frac{3x-5}{4}}+\frac{\frac{27x^2-54x+71}{8}}{\sqrt[3]{\left(x+9\right)^2}+\sqrt[3]{\left(x+9\right)}.\frac{-3x+1}{2}+\left(\frac{-3x+1}{2}\right)^2}}{x-3}\)
\(lim_{x\rightarrow-1}A=\frac{19}{48}\)
Gõ nhờ tý nhé, ko phải đáp án đâu
 

29 tháng 4 2019

x,y,z là số thực hay số dương vậy?

29 tháng 4 2019

Nếu x,y,z dương thì như sau:

Áp dụng bất đẳng thức phụ: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) ; \(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

Chứng minh: \(\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2+\left(\frac{c}{\sqrt{z}}\right)^2\right]\left(\sqrt{x}^2+\sqrt{y}^2+\sqrt{z}^2\right)\ge\left(a+b+c\right)^2\) (Bunyakovsky cho 3 số)
\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)+2\left(xy+yz+xz\right)\ge0\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)\ge\left(xy+yz+xz\right)\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)+2\left(xy+yz+xz\right)\ge3\left(xy+yz+xz\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

Ta có

\(\frac{1+x^2}{y+z}+\frac{1+y^2}{x+z}+\frac{1+z^2}{x+y}\ge\frac{2x}{y+z}+\frac{2y}{x+z}+\frac{2z}{x+y}\)

\(=\frac{x^2}{\frac{1}{2}\left(xy+xz\right)}+\frac{y^2}{\frac{1}{2}\left(xy+yz\right)}+\frac{z^2}{\frac{1}{2}\left(xz+yz\right)}\)
\(\ge\frac{\left(x+y+z\right)^2}{xy+yz+xz}\ge\frac{3\left(xy+yz+xz\right)}{xy+yz+xz}=3\)
Dấu "=" xảy ra <=> x=y=z=1
Vậy GTNN của biểu thức trên là 3 khi x=y=z=1

Còn x,y,z là số thức thì không biết 

30 tháng 8 2020

Bài làm:

Δ ABC vuông tại A?

Ta có: \(\sin B=\frac{AC}{BC}=\frac{3}{5}\) <=> \(\frac{AC}{3}=\frac{BC}{5}=k\) \(\left(k\inℕ^∗\right)\)

=> \(AB^2=BC^2-CA^2=25k^2-9k^2=16k^2\)

=> \(AB=4k\)

Từ đây ta có thể dễ dàng tính được:

\(\cos B=\frac{AB}{BC}=\frac{4}{5}\) ; \(\tan B=\frac{AC}{AB}=\frac{3}{4}\) ; \(\cot B=\frac{AB}{AC}=\frac{4}{3}\)

30 tháng 8 2020

\(sin^2b+cos^2b=1\)      

\(\left(\frac{3}{5}\right)^2+cos^2b=1\)        

\(\frac{9}{25}+cos^2b=1\)     

\(cos^2b=\frac{16}{25}\)                      

\(cosb=\pm\sqrt{\frac{16}{25}}=\pm\frac{4}{5}\)       

\(tanb=\frac{sinb}{cosb}=\orbr{\begin{cases}\frac{\frac{3}{5}}{\frac{4}{5}}=\frac{3}{4}\\\frac{\frac{3}{5}}{\frac{-4}{5}}=\frac{-3}{4}\end{cases}}\)     

\(cotb=\frac{1}{tanb}=\orbr{\begin{cases}\frac{1}{\frac{3}{4}}=\frac{4}{3}\\\frac{1}{\frac{-3}{4}}=\frac{-4}{3}\end{cases}}\)

Bạn nào đam mê số học thử làm bài này nhé.Trần Quốc Đạt xin bày ra trò chơi mới như sau:Bạn hãy đóng phí \(k\) trenni ("trenni" là đơn vị tiền tệ của thế giới nơi mình đang sống), trong đó \(0\le k\le100\).Tương ứng với \(k\) trenni bạn đóng thì mình sẽ chọn ra \(k\) số tự nhiên từ \(1\) đến \(100\), và đọc to chúng.Nếu trong các số mình đọc lên có 2 số mà số này gấp đôi số...
Đọc tiếp

Bạn nào đam mê số học thử làm bài này nhé.

Trần Quốc Đạt xin bày ra trò chơi mới như sau:

  • Bạn hãy đóng phí \(k\) trenni ("trenni" là đơn vị tiền tệ của thế giới nơi mình đang sống), trong đó \(0\le k\le100\).
  • Tương ứng với \(k\) trenni bạn đóng thì mình sẽ chọn ra \(k\) số tự nhiên từ \(1\) đến \(100\), và đọc to chúng.
  • Nếu trong các số mình đọc lên có 2 số mà số này gấp đôi số kia thì bạn thắng, ngược lại thì mình thắng.
  • Nếu bạn thắng, bạn được thưởng \(500\) trenni.
  • Nếu bạn thua, bạn bị mất \(k\) trenni đã đóng.

VD: Nếu bạn đóng \(10\) trenni thì bạn sẽ mất số tiền đó, nhưng nếu bạn đóng \(100\) trenni thì chắc chắn bạn thắng, nên bạn sẽ lời \(400\) trenni.

Câu hỏi đặt ra là: Bạn sẽ đóng bao nhiêu trenni để được lời nhiều nhất có thể?

Lưu ý: Đáp số không phải là \(50,51,99\).

9
7 tháng 1 2017

51 có đúng không

7 tháng 1 2017

Sai rồi sai rồi...!!!

√​(9−√​7​​​)(9+√​7​​​)​​​x

√​9​2​​−√​7​​​​2​​​​​x

√​81−√​7​​​​2​​​​​x

√​81−7​​​x

√​74​​​x

cái 72 là 7 mũ 2 nha 

2/x+2 + 8/x+8 = 4/x+4 + 6/x+6 ( ĐK: x >= 0 ; x khác -2 ; -4 ; -6 ; -8 )
2(x+8) + 8(x+2) / (x+2)(x+8) = 4(x+6) + 6(x+4) / (x+4)(x+6)
<=> 2x +16 +8x +16 / x^2 + 8x + 2x + 16 = 4x +24 + 6x + 24 / x^2 + 10x + 24
<=> 10x + 32/ x^2 + 10x +16 = 10x + 48/ x^2 + 10x + 24
<=> (10x + 32)(x^2 + 10x + 24) = (10x + 48)(x^2 +10x + 16)
<=> 10x^3 + 100x^2 + 240x + 32x^2 + 320x + 768 = 10x^3 + 100x^2 + 160x + 48x^2 + 480x + 768
<=> 10x^3 + 132x^2 + 560x + 768 = 10x^3 + 148x^2 + 640x + 768
Lấy vế phải trừ vế trái , ta có :
<=> 16x^2 + 80x = 0
<=> 16x( x+ 5 ) = 0
<=> 16x = 0 hoặc x+ 5 = 0 ( Viết vào vở thì dùng móc vuông nha )
<=> x = 0 (TM) hoặc x = -5 (L)
Vậy x = 0

26 tháng 9 2020

Đáp án -5 sao lại loại ạ

6 tháng 4 2017

em mới học lớp 6 thôi,toán lớp 7 em còn chưa làm được thì nói gì toán lớp 9

anh thông cảm nha!!!

6 tháng 4 2017

a/ Bạn tự vẽ

b/ Phương trình hoành độ giao điểm của (P) và (d) là:

        \(\frac{-x^2}{2}=\frac{3}{2}x-m\)

Quy đồng bỏ mẫu, mẫu chung là 2

\(\Leftrightarrow-x^2=3x-2m\)

\(\Leftrightarrow-x^2-3x+2m=0\)

( a = -1; b = -3; c = 2m )

\(\Delta=b^2-4ac\)

    \(=\left(-3\right)^2-4.\left(-1\right).2m\)

     \(=9+8m\)

Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow9+8m>0\Leftrightarrow m< -\frac{9}{8}\)

Vậy khi m < -9/8 thì (d) và (P) cắt nhau tại 2 điểm phân biệt