K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2021

undefined

11 tháng 5 2021

bn ở trường nào

 

14 tháng 5 2021

undefined

14 tháng 5 2021

Xét ΔHAM và ΔKCM có:

góc MHA = góc MKC (=90 độ)

AM = CM (gt)

góc AMH = góc CMK (2 góc đối đỉnh)

⇒ ΔHAM = ΔKCM (canh huyền-góc nhọn)

 

a: XétΔHAM vuông tại H và ΔKCM vuông tại K có

MA=MC

góc HMA=góc KMC

=>ΔHAM=ΔKCM

b: (BH+BK)/2=(2*BH+HK)/2=BH+HM=BM>AB

11 tháng 7 2023

a) Ta có tam giác ABC vuông tại B và đường phân giác AD. Khi đó, ta có:

∠BAD = ∠CAD (do AD là đường phân giác)

∠BAD = ∠EAD (do tam giác BAD = tam giác EAD)

Vậy tam giác BAD = tam giác EAD.

b) Ta cần chứng minh AD là trung trực của BE. Để chứng minh điều này, ta cần chứng minh hai góc BAD và BAE bằng nhau.

Ta có: ∠BAD = ∠EAD (do tam giác BAD = tam giác EAD)

∠BAE = ∠DAE (do AD là đường phân giác)

Vậy hai góc BAD và BAE bằng nhau.

Do đó, ta có AD là trung trực của BE.

c) Trên tia đối của BA, lấy K sao cho BK = CE. Ta cần chứng minh rằng 3 điểm E, D, K thẳng hàng.

Ta có: ∠BAD = ∠EAD (do tam giác BAD = tam giác EAD)

∠BAK = ∠CAE (do BK = CE)

Vậy hai góc BAD và BAK bằng nhau.

Do đó, ta có 3 điểm E, D, K thẳng hàng.

#THT

20 tháng 5 2021

\(a)\)

\(\text{Ta có}:\)

\(\Delta ABC\)\(\text{vuông tại}\)\(A\)

\(\rightarrow BC^2=AB^2+AC^2\)

\(\rightarrow AC^2=BC^2-AB^2\)

\(\rightarrow AC^2=15^2-9^2\)

\(\rightarrow AC^2=144\)

\(\rightarrow AC=12\)

\(\rightarrow AB< AC< BC\)

\(\rightarrow\widehat{C}< \widehat{B}< \widehat{A}\)

\(\text{Ta có:}\)

\(AB\perp AC\rightarrow\widehat{BAC}=\widehat{EAC}\)

\(\rightarrow AB=AE\rightarrow A\)\(\text{là trung điểm}\)\(BE\)

\(b)\)

\(\text{Theo phần a), ta có:}\)\(AB=AE\rightarrow A\text{ }\)\(\text{là trung điểm}\)\(BE\)
\(\rightarrow CA\)\(\text{là trung tuyến}\)\(\Delta CBE\)

\(\text{Mà}\)\(BH\)\(\text{là trung tuyến}\)\(\Delta BCE\)\(,\)\(BH\text{∩}\text{ }CA=M\)

\(\rightarrow M\text{ }\)\(\text{là trọng tâm}\)\(\Delta BCE\)

\(\rightarrow CM=\frac{2}{3}CA\)

\(\rightarrow CM=8\)

\(c)\)

\(\text{Theo phần a)}\)\(\rightarrow\widehat{ECA}=\widehat{ACB}\)

                         \(\rightarrow\widehat{CEA}=\widehat{CBA}\)

\(\text{Do}\)\(AK//CE\rightarrow\widehat{KAB}=\widehat{AEC}=\widehat{CBA}=\widehat{KBA}\rightarrow KB=KA\)

         \(\widehat{KAC}=\widehat{ECA}=\widehat{ACB}=\widehat{ACK}\rightarrow KA=KC\)

         \(\rightarrow KB=KC\rightarrow K\)\(\text{là trung điểm}\)\(BC\)

\(\text{Mà}\)\(M\)\(\text{là trọng tâm}\)\(\Delta CBE\rightarrow E,MK\)\(\text{thẳng hàng}\)

20 tháng 5 2021

C B A H K M E