K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@

a: ta có: \(\widehat{KCE}=\widehat{ACB}\)(hai góc đối đỉnh)

\(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

Do đó: \(\widehat{KCE}=\widehat{ABC}\)

Xét ΔDHB vuông tại H và ΔEKC vuông tại K có

BD=CE

\(\widehat{DBH}=\widehat{ECK}\)

Do đó: ΔDHB=ΔEKC

=>BH=CK

 

1 tháng 3 2020

A D B C E H K I

Vì tam giác ABC cân tại Asuy ra AB=AC, góc B=góc C

mà góc ABC + góc ABD = 1800, góc ACB +  góc ACE = 1800

suy ra góc ABD = góc ACE

Xét tam giác ABD và tam giác ACE

có AB=AC (CMT); góc ABD = góc ACE; BD=CE (GT)

suy ra tam giác ABD =  tam giác ACE (c.g.c)    (*)

suy ra góc DAB=góc EAC (hai góc tương ứng)

Xét tam giác vuông AHB và tam giác vuông ACK

có AB=AC (CMT), góc DAB=góc EAC (CMT)

suy ra tam giác  AHB = tam giác ACK ( cạnh huyền-góc nhọn)  (1)

b) Tư (1) suy ra AH=AK (hai cạnh tương ứng)  (2)

Xét tam giác vuông AHI và tam giác vuông AKI

có AI chung, AH=AK (CMT)

suy ra  tam giác  AHI = tam giác AKI (cạnh huyền-cạnh góc vuông)

suy ra góc HAI=góc KAI

suy ra AI là tia phân giác của góc DAE

c) Từ (2) suy ra tam giác AHK cân tại A

suy ra góc AHK = góc AKH  (3)

tam giác AHK có góc HAK + góc AHK + góc AKH=1800 (4)

 Từ (3) và (4) suy ra góc AHK = (1800- góc AHK ) :2   (5)

Từ (*) suy ra tam giác ADE cân tại A

suy ra góc ADE = góc AED  (6)

tam giác ADE có góc EAD + góc ADE + góc AÈD=1800 (7)

 Từ (6) và (7) suy ra góc ADE = (1800- góc DAE ) :2  (8)

Từ (5) và (8) suy ra góc ADE = góc AHK

mà góc ADE đồng vị với góc AHK

suy ra HK//DE

29 tháng 2 2020

Phần a là chứng minh 2 tam giác ABH = ACK à bạn ?

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔABD=ΔACE

=>AD=AE

Xét ΔBHD vuông tại H và ΔCKE vuông tại K có

BD=CE

góc D=góc E

=>ΔBHD=ΔCKE

=>BH=CK

Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

BH=CK

=>ΔAHB=ΔAKC

b: góc IBC=góc HBD

góc ICB=góc KCE

mà góc HBD=góc KCE

nên góc IBC=góc ICB

=>IB=IC

IB+BH=IH

IC+CK=IK

mà IB=IC; BH=CK

nên IK=IH

Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AH=AK

AI chung

=>ΔAHI=ΔAKI

=>góc HAI=góc KAI

=>AI là phân giác của góc DAE

c: Xet ΔADE có AH/AD=AK/AE

nên HK//DE