\(\left(\frac{x+x^3}{1-x^2}-\frac{x-x^3}{1+x^2}\right):\left(\frac{1+x}{1-x}-\frac{1-x}{1+x}\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(H=\left(\frac{x+x^3}{1-x^2}-\frac{x-x^3}{1+x^2}\right):\left(\frac{1+x}{1-x}-\frac{1-x}{1+x}\right)\)

\(=\left(\frac{x\left(x^4+2x^2+1\right)}{\left(1-x^2\right)\left(1+x^2\right)}-\frac{x\left(x^4-2x^2+1\right)}{\left(1-x^2\right)\left(1+x^2\right)}\right):\left(\frac{\left(1+x\right)^2}{\left(1-x\right)\left(1+x\right)}-\frac{\left(1-x\right)^2}{\left(1+x\right)\left(1-x\right)}\right)\)

\(=\frac{x^5+2x^3+x-x^5+2x^3-x}{\left(1-x\right)\left(1+x\right)\left(1+x^2\right)}:\frac{x^2+2x+1-x^2+2x-1}{\left(1+x\right)\left(1-x\right)}\)

\(=\frac{4x^3}{\left(1-x\right)\left(1+x\right)\left(1+x^2\right)}\cdot\frac{\left(1+x\right)\left(1-x\right)}{4x}\)

\(=\frac{4x^3}{4x\left(1+x^2\right)}=\frac{4x^3}{4x^3+4x}\)

1 tháng 8 2016

\(\left(\frac{x+1}{2\left(x-1\right)}+\frac{3}{x^2-1}-\frac{x+3}{2\left(x+1\right)}\right)\frac{4x^2-4}{5}\)
\(=\left(\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)}\right)\frac{4x^2-4}{5}\)
\(=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4x^2-4}{5}\)
\(=\left(\frac{x^2+2x+1+6-x^2+x-3x+3}{2\left(x-1\right)\left(x+1\right)}\right)\frac{4\left(x^2-1\right)}{5}\)
\(=\frac{10}{2\left(x-1\right) \left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=4\)
Vậy giá trị của biểu thức là 4

18 tháng 1 2016

cái câu rút gọn phân thức, bạn xem lại đề thử nhé.

 

18 tháng 1 2016

vậy bạn tính giúp bài phía dưới nha bạn 

 

9 tháng 2 2015

\(\frac{1-2x-2x^2}{1-x}\)

\(A=\left(\dfrac{x^2-2x+1}{x^2+x+1}-\dfrac{-2x^2+4x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right):\dfrac{2x}{x^3+x}\)

\(=\dfrac{x^3-3x^2+3x-1+2x^2-4x-1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}\)

\(=\dfrac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}=\dfrac{x^2+1}{2}\)

\(A=\left(\dfrac{x^2+1}{x^2\cdot\left(x+1\right)^2}+\dfrac{2}{\left(x+1\right)^3}\cdot\dfrac{x+1}{x}\right):\dfrac{x-1}{x^3}\)

\(=\dfrac{x^2+3}{x^2\cdot\left(x+1\right)^2}\cdot\dfrac{x^3}{x-1}=\dfrac{x\left(x^2+3\right)}{\left(x-1\right)\left(x+1\right)^2}\)

3 tháng 9 2016

\(A=\left(\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}-3}{x-1}\right):\left(\frac{x+2}{x+\sqrt{x}-2}-\frac{\sqrt{x}}{\sqrt{x}+2}\right)\left(ĐK:x\ge0;\ne1\right)\)

\(=\left[\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\left[\frac{x+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}}{\sqrt{x}+2}\right]\)

\(=\frac{3\left(\sqrt{x}+1\right)-\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{3\sqrt{x}+3-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{x+2-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{2\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\)

\(=\frac{2\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}=\frac{2\left(\sqrt{x}+3\right)}{\sqrt{x}+1}\)

20 tháng 8 2016

\(A=\frac{x}{x+1}.\left(\frac{x^3+1}{x^2-x+1}+\frac{x+1}{x}\right)=\frac{x}{x+1}.\left(\frac{\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}+\frac{x+1}{x}\right)=\frac{x}{x+1}.\left(x+1+\frac{x+1}{x}\right)\\ =\frac{x}{x+1}.\left(\frac{x^2+x+1}{x}\right)\)

\(=\frac{x}{x+1}.\frac{\left(x+1\right)^2}{x}=x+1\)