Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có hình vẽ sau:
Lấy điểm \(R\in AB|\angle BCR=\angle ABN\). $CR$ cắt $BM$ tại $K$ và $BN$ tại $E$
Khi đó:
\(\left\{\begin{matrix} \angle BCR=\angle ABN\\ \angle RBC=\angle NAB=90^0\end{matrix}\right.\Rightarrow \triangle ABN\sim \triangle BCR\)
\(\Rightarrow 1=\frac{AB}{BC}=\frac{AN}{BR}\Rightarrow AN=BR(1)\)
Từ hai tam giác đồng dạng ta cũng suy ra \(\angle ANE=\angle ANB=\angle CRB=\angle ERB\)
Xét tứ giác $AREK$ có \(\angle A+\angle ARE+\angle ANE+\angle NER=360^0\)
\(\Leftrightarrow 90^0+\angle ARE+\angle ERB+\angle NER=360^0\)
\(\Leftrightarrow 90^0+180^0+\angle NER=360^0\Rightarrow \angle NER=90^0\rightarrow BE\perp RK\)
Tam giác $RBK$ có $BE$ vừa là đường cao vừa là đường phân giác nên $RBK$ là tam giác cân tại $B$
\(\Rightarrow BR=BK(2)\). Từ \((1),(2)\Rightarrow AN=BK\)
Tam giá $RBK$ cân \(\Rightarrow \angle BRK=\angle BKR=\angle MKC\)
Mà \(\angle BRK=\angle KCM\) (so le trong) nên \(\angle MKC=\angle KCM\Rightarrow \triangle KMC\) cân tại $M$
\(\Rightarrow CM=MK\)
Do đó, \(AN+CM=BK+MK=BM\) (đpcm)
\(\)
Trên tia đối của tia CD em lấy điểm J sao cho CJ = AI. Qua M vẽ đường thẳng song song với BI cắt BJ tại N
Dễ cm tam giác vuông ABI = tam giác vuông CBJ => BI = BJ
Mặt khác dễ cm BI _|_ BJ => MN _|_ BJ
Và => MBJ = 900 - MBI => 900 - ABI = 900- CBJ = MJB => tam giác MBJ cân tại M => N là trung điểm của BJ
Ta có MI >= BN = BJ/2 = BI/2 ( vì BIMN là hình thang vuông tại B và N) ( đpcm)
Hay BI =< 2MI (đpcm)
Bài 2:
a: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{CFE}=60^0\\\widehat{AEB}=\widehat{CEF}=60^0\end{matrix}\right.\)
=>ΔCFE đều
b: Xét tứ giác ABCD có
\(\widehat{BAC}=\widehat{BDC}=90^0\)
Do đó: ABCD là tứ giác nội tiếp
a: Xét ΔABM vuông tại B và ΔADN vuông tại D có
AB=AD
BM=DN
Do đó: ΔABM=ΔADN
b: ΔABM=ΔADN
=>AM=AN và \(\widehat{MAB}=\widehat{NAD}\)
\(\widehat{MAB}+\widehat{DAM}=\widehat{BAD}=90^0\)
mà \(\widehat{MAB}=\widehat{NAD}\)
nên \(\widehat{DAM}+\widehat{DAN}=90^0\)
=>\(\widehat{MAN}=90^0\)
Xét ΔAMN có AM=AN và \(\widehat{MAN}=90^0\)
nênΔAMN vuông cân tại A
d: ΔAMN cân tại A
mà AI là đường phân giác
nên I là trung điểm của MN và AI\(\perp\)MN tại I
=>AP\(\perp\)MN tại I
Xét ΔPNM có
PI là đường cao
PI là đường trung tuyến
Do đó: ΔPNM cân tại P
=>PN=PM
=>PM=PD+DN=PD+BM