Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Gọi mỗi đinh của tứ giác là A, B, C, D. Các góc ngoài tương ứng lần lượt là A1, B1, C1, D1
Ta có: A+ B+ C+ D+ A1+ B1+ C1+ D1= 720 độ
Ma A+ B+ C+ D= 360 độ nên A1+ B1+ C1+ D1= 720 - 360= 360 độ
A B C D 6 8 H O K
Gọi O là giao điểm của AC và BD
Do ABCD là hình thang cân và AC vuông BD nên ta có OCD là tam giác vuông cân tại O
=> Góc ODC = 450 => HDB vuông cân tại H
=> BH = DH
Dựng thêm đường cao AK.
Ta có ABHK là hình chữ nhật => HK = AB = 6
DK + HC = 2DK = DC - HK = 8 - 6 = 2 => 2DK = 2 => DK = 1
=> DH = DK + HK = 1 + 6 = 7 cm
Vậy BH = DH = 7cm.
Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng với ΔOCD
=>OA/OC=OB/OD=AB/CD=3/5
=>BO/BD=3/8; AO/AC=3/8
Xét ΔBDC có ON//DC
nên ON/DC=BO/BD
=>ON/10=3/8
=>ON=3,75cm
Xét ΔADC có OM//DC
nên OM/DC=AO/AC=3/8
=>OM=3,75cm
=>MN=7,5cm