Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) d là đường trung trực của BC nên B và C đối xứng qua d D đối xứng với A qua d nên đường thẳng đối xứng với AB qua d là DC do AB và CD đối xứng qua d nên AC=CD.
c) ta có đoạn thẳng đối xứng với AC qua d là DB vì d là đường trung trực của AD và BC nên AD vuông góc với d và BC vuông với d vậy AD//BC, do đó ABCD là hình thanh do AC đối xứng với BD qua d nên AC=DB vậy hình thanh ABCD có hai đường chéo bằng nhau nên là hình thang cân
Câu b mk ko bt nha
a) xét tam giác HBA và tam giác ABC có:
Góc BHA = góc BAC
Chung góc ABC
=) Tam giác HBA đồng dạng với tam giác ABC (g-g)
b) Áp dụng định lý py-ta-go cho tam giác ABC vuông tại A ta đươc:
AB^2 + AC^2 = BC^2
(=) 9^2 + 12^2 = BC^2
(=) BC = 15
do tam giác HBA đồng dạng với tam giác ABC
=) BA/BC = HA/AC
(=) 9/15 = HA/12
(=) HA = 7,2
- Vì ta nối DB thì sẽ có HE và GF là đường tb của tam giác ADB và DCB => GF//HE vì cùng // với DB và bằng 1/2 DB (1)
- Nối AC thì sẽ có HG và EF là đường tb của tam giác DCA và BAC => EF//HG vì cùng //AC và bằng 1/2 AC (2)
Từ (1) và (2) => tứ giác HEFG là HBH (có các cặp cạnh // và bằng nhau từng đôi một)
Bạn chỉ việc nối B vs D hoặc A vs C
Sau đó CM 2 cạnh đối song song và bằng nhau
Dựa vào tính chất đường trung bình
Xét tam giác AHD vuông tại H và tam giác BKC vuông tại K
Ta có: AD= BC (gt)
Góc D = góc C
=> tam giác AHD= tam giác BKC (cạnh huyền- góc nhọn)
=> DH= CK ( 2 cạnh tương ứng)
xét tam giác AHD và tam giác BKC có:
AD = BC (gt)
góc ADH = góc BCK (gt)
góc AHD = góc AKC = 900
=> tam giác ... = tam giác .... (ch-gn)
=> DH = CK (cạnh tương ứng)
t i c k nha!! 463745768658897697696789768568654
A B D C H K
Có hình thang ABCD cân
⇒AD=BC ; ∠ADC=∠BCD
Có AH⊥DC
⇒∠AHD=∠AHC
Có BK⊥DC
⇒∠BKC=∠BKD
* Xét △AHD(∠AHD=90) và ΔBKC(∠BKC=90) có
AD=BC(c/m trên)
∠ADH=∠BCK
⇒△AHD=ΔBKC( cạnh huyền-góc nhọn)
⇒DH=KC(2 cạnh tương ứng)(đpcm)
Tranh đây ...