Hình thang cân ABCD có AB // CD, AB &l...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2020

giúp mừn vs mừn k cho...........

9 tháng 3 2020

a) d là đường trung trực của BC nên B và C đối xứng qua d D đối xứng với A qua d nên đường thẳng đối xứng với AB qua d là DC do AB và CD đối xứng qua d nên AC=CD.

c) ta có đoạn thẳng đối xứng với AC qua d là DB vì d là đường trung trực của AD và BC nên AD vuông góc với d và BC vuông với d vậy AD//BC, do đó ABCD là hình thanh do AC đối xứng với BD qua d nên AC=DB vậy hình thanh ABCD có hai đường chéo bằng nhau nên là hình thang cân

Câu b mk ko bt nha

29 tháng 11 2018

Mình trả lời rồi đó bn

17 tháng 5 2018

a) xét tam giác HBA và tam giác ABC có:

Góc BHA = góc BAC 

Chung góc ABC

=) Tam giác HBA đồng dạng với tam giác ABC (g-g)

b) Áp dụng định lý py-ta-go cho tam giác ABC vuông tại A ta đươc:

AB^2 + AC^2 = BC^2

(=) 9^2 + 12^2 = BC^2

(=) BC = 15 

do tam giác HBA đồng dạng với tam giác ABC

=) BA/BC = HA/AC

(=) 9/15 = HA/12

(=) HA = 7,2

29 tháng 9 2017

- Vì ta nối DB thì sẽ có HE và GF là đường tb của tam giác ADB và DCB => GF//HE vì cùng // với DB và bằng 1/2 DB (1) 
- Nối AC thì sẽ có HG và EF là đường tb của tam giác DCA và BAC => EF//HG vì cùng //AC và bằng 1/2 AC (2) 
Từ (1) và (2) => tứ giác HEFG là HBH (có các cặp cạnh // và bằng nhau từng đôi một) 

29 tháng 9 2017

Bạn chỉ việc nối B vs D hoặc A vs C

Sau đó CM 2 cạnh đối song song và bằng nhau

Dựa vào tính chất đường trung bình

24 tháng 6 2016

Xét tam giác AHD vuông tại H và tam giác BKC vuông tại K

Ta có: AD= BC (gt)

          Góc D = góc C

=> tam giác AHD= tam giác BKC (cạnh huyền- góc nhọn)

=> DH= CK ( 2 cạnh tương ứng)

xét tam giác AHD và tam giác BKC có:

            AD = BC (gt)

              góc ADH = góc BCK (gt)

                   góc AHD = góc AKC = 900

=> tam giác ... = tam giác .... (ch-gn)

=> DH = CK (cạnh tương ứng)

t i c k nha!! 463745768658897697696789768568654

29 tháng 6 2017

Hình thang cân

16 tháng 6 2019

A B D C H K

Có hình thang ABCD cân

⇒AD=BC ; ∠ADC=∠BCD

Có AH⊥DC

⇒∠AHD=∠AHC

Có BK⊥DC

⇒∠BKC=∠BKD

* Xét △AHD(∠AHD=90) và ΔBKC(∠BKC=90) có

AD=BC(c/m trên)

∠ADH=∠BCK

⇒△AHD=ΔBKC( cạnh huyền-góc nhọn)

⇒DH=KC(2 cạnh tương ứng)(đpcm)