Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tứ giác AHCE có
IA=IC (đề bài)
IH=IE (đề bài)
=> AHCE là hbh (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
^AHC=90 (AH vuông góc BC)
=> AHCE là HCN
b/
+ Xét tg AHC có
IA=IC => HI là trung tuyến
MH=MC (đề bài) => AM là trung tuyến
=> G là trọng tâm của tam giác AHC \(\Rightarrow IG=\frac{IH}{3}\Rightarrow IG=\frac{GH}{2}\)
+ Xét tam giác ACE chứng minh tương tự ta cũng có \(IK=\frac{IE}{3}\Rightarrow IK=\frac{KE}{2}\)
Mà IH = IE
=> IK=IG => GH=KE=KI+KG=GK
a: Xét tứ giác AHCE có
I là trung điểm của AC
I là trung điểm của HE
Do đó: AHCE là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
b: Xét ΔHKC có
M là trung điểm của HC
MG//KC
Do đó:G là trung điểm của HK
=>HG=GK(1)
Xét ΔEGC có
N là trung điểm của EC
NK//GC
Do đó: K là trung điểm của EG
=>EK=KG(2)
Từ (1) và (2) suy ra EK=KG=HG
A B C H E I M N G K
a/
Ta có
IA=IC (gt)
IH=IE (gt)
=> AHCE là hình bình hành (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
\(AH\perp BC\Rightarrow\widehat{AHC}=90^o\)
=> AHCE là hình chữ nhật (hình bình hành có 1 góc vuông là HCN)
b/
Xét tg AHC có
MH=MC (gt)
IA=IC (gt)
=> G là trong tâm của tg AHC \(\Rightarrow HG=2IG\) (1)
\(\Rightarrow HG+IG=IH=3IG\) (2)
Chứng minh tương tự ta có K là trọng tâm của tg ACE
\(\Rightarrow KE=2IK\left(3\right)\Rightarrow KE+IK=IE=3IK\) (4)
Mà IH=IE (gt) (5)
Từ (2) (4) (5) => IG=IK (6)
Từ (1) (3) (6) => HG=KE
Mà IG=IK => IG+IKGK=2IK=KE
=> HG=GK=KE
a: Xét tứ giác AHCE có
I là trung điểm chung của AC và HE
góc AHC=90 độ
=>AHCE là hình chữ nhật
b: Xét ΔAHC có
HI,AM là trung tuyến
HI cắt AM tại G
=>G là trọng tâm
=>HG=2/3HI=2/3*1/2*HE=1/3HE
Xét ΔCAE có
AN,EI là trung tuyến
AN cắt EI tại K
=>K là trọng tâm
=>EK=2/3EI=1/3EH
HG+GK+KE=HE
=>GK=HE-1/3HE-1/3HE=1/3HE
=>HG=GK=KE
A D C B F M N E
a) AD//BC
=> ^DAE = ^AEB ( so le trong)
mà ^BAE = ^EAD ( AE là phân giác ^BAD)
=> ^BAE =^ AEB
=> Tam giác BAE cân tại B
=> BA=BE
b) BF là paah giác ^ABE của tam giác cân BAE
=> BF là đường cao, đường trung tuyến của tam giác BAE
=> BF vuông góc AE
và F là trung điểm AE hay FA=FE
c) M là trung điểm AB, F là trung điểm AE
=> MF là đường trung bình của tam giác ABE
=> MF//BE hay MF//BC (1)
M là trung điểm AB, N là trung điểm CD
=> MN là đường trung bình của hình thnag ABCD
=> MN//BC (2)
Từ (1); (2)
=> M. N, F thẳng hàng
Đáp án: a) MK // AH
b) M,N,K thẳng hàng
Giải thích các bước giải: a) Xét tam giác AHE ta có:
M là trung điểm của AE
K là trung điểm của HE
⇒ MK là đường trung bình của tam giác AHE
⇒ MK // AH (đpcm)
b) Theo câu a ta có: MK // AH (1)
Xét tam giác CHE ta có:
N là trung điểm của HC
K là trung điểm của HE
⇒ NK là đường trung bình của tam giác CHE
⇒ NK // CE (đpcm) (2)
Ta có: AH // CE (3)
Từ (1), (2) và (3) suy ra: MK // CE (4)
Từ (2) và (4) ta có: MK trùng với NK (tiên đề ơclit)
⇒ M,N,K thẳng hàng (đpcm)