Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ABC và BCD có chiều cao bằng nhau , đáy AB=1/2CD => SABC= 1/2 SBCD
mặt khác 2 tam giác này có chung đáy BD => chiều cao đỉnh C
xét tam giác ABG và BCG có chung đáy BG, chiều cao đỉnh A = 1/2 chiều cao đỉnh C => SABG=1/2 SBCG
vậy diện tích tam giác CBG là: 34,5 x2 = 69 cm2
diện tích ABCD : (34,5+69)+(34,5+69)x2 = 310,5 cm2
duyệt đi
xét tam giác ABC và BCD có chiều cao bằng nhau , đáy AB=1/2CD => SABC = 1/2 SBCD
mặt khác 2 tam giác này có chung đáy BD => chiều cao đỉnh C
xét tam giác ABG và BCG có chung đáy BG => chiều cao đỉnh A = 1/2 chiều cao đỉnh C => SABG= 1/2 SBCG
vậy diện tích tam giác CBG là: 34,5 x 2= 69 cm2
diện tích hình thang ABCD : (34,5+69)+(34,5+69) x2 = 310,5 cm2
duyệt đi
Cho hình thang ABCD đáy nhỏ AB đáy lớn CD. Hai đường chéo AC và BD cắt nhau tại G. Biết diện tích tam giác AGD bằng 18 cm2 và diện tích tam giác CGD bằng 18 cm2 . Tính diện tích hình thang ABCD.
Diện tích hình thang ABCD là 73,96 cm2
đ/s : 73,96 cm2
A B C D G 18 25
ABD = ABC (chung đáy AB, chiều cao bằng chiều cao hình thang).
Mà 2 tam giác này có phần chung ABG nên AGD = BGC = 18cm2.
Hai tam giác ADG và CDG có chung cạnh đáy DG nên 2 đường cao tỉ lệ với 2 diện tích là 18/25. Hai đường cao của 2 tam giác này
cũng là 2 đường cao của 2 tam giác ABG và CBG,
Diện tích tam giác ABG là:
18 : 25 x 18 = 12,96 (cm2)
Diện tích hình thang ABCD là:
18 + 25 + 18 + 12,96 = 73,96 (cm2)
Đap số : 73,96 cm2
ABssCD⇒ABCD=OBOD=OAOC=23ABssCD⇒ABCD=OBOD=OAOC=23
a)SAOD=12OA.OD.sinAOBSAOD=12OA.OD.sinAOB
SBOC=12OB.OC.sinBOCSBOC=12OB.OC.sinBOC
⇒SAODSBOC=OA.ODOB.OC⇒SAODSBOC=OA.ODOB.OC vì ˆAOD=ˆBOC⇒sinAOD=sinBOCAOD^=BOC^⇒sinAOD=sinBOC
⇔SAODSBOC=23.32=1⇔SAODSBOC=23.32=1
b) vì ABssCD⇒OHOK=23⇒OHHK=25ABssCD⇒OHOK=23⇒OHHK=25
SAOB=12.OH.ABSABCD=12(AB+CD).HK=12(AB+32AB).HK=12.52AB.HKSAOB=12.OH.ABSABCD=12(AB+CD).HK=12(AB+32AB).HK=12.52AB.HK
⇒SAOBSABCD=12OH.AB12HK.52AB=25.152=425⇒SAOBSABCD=12OH.AB12HK.52AB=25.152=425
⇒SABCD=4425=25
a) Ta có: S hình thang ABCD là : \(\frac{\left(AB+CD\right)\cdot h}{2}=450\Rightarrow3CD\cdot h=900\Rightarrow h=\frac{900}{3CD}=\frac{300}{CD}\)
Mà hình thang ABCD và tam giác ABC có cùng đường cao hạ từ C
Nên diện tích tam giác ABC là: \(\frac{AB\cdot h}{2}=\frac{2CD\cdot h}{2}=\frac{2CD\cdot\frac{300}{CD}}{2}=300\left(cm^2\right)\)
b) hình tứ giác có diện tích nhỏ nhất là hình thang CMAN (vì CM=CD/2 và AN=AB/2)
Diện tích tứ giác đó là: \(\frac{\left(CM+AN\right)\cdot h}{2}=\frac{1,5CD\cdot\frac{300}{CD}}{2}=225\left(cm^2\right)\)
c)IM<IN (sr nha mình bận một chút)
có gì k cho mình nha
Ta có
\(S_{ABD}=S_{ABC}\left(1\right)\)( chung đáy AB, chiều cao = chiều cao hình thang )
Lai có
\(S_{ABC}=S_{ABG}+S_{BGC}\left(2\right)\)
\(S_{ABD}=S_{AGD}+S_{ABG}\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow S_{ABG}+S_{BGC}=S_{AGD}+S_{ABG}\)
\(\Rightarrow S_{BGC}=S_{AGD}=18cm^2\)
Vì \(\Delta GDC\) và \(\Delta AGD\) có chung cạnh DG và có \(S_{AGD}=18cm^2;S_{GCD}=25cm^2\)
\(\Rightarrow S_{AGD}=\frac{18}{25}\times S_{GCD}\)
=> Tỉ số đường cao \(\Delta AGD\) và \(\Delta GDC\) là 18/25 (4)
Mà
- đường cao \(\Delta AGD\) = đường cao \(\Delta ABG\) (5)
- đường cao \(\Delta GDC\)= đường cao \(\Delta CBG\) (6)
Từ \(\left(4\right);\left(5\right);\left(6\right)\Rightarrow\) Tỉ số đường cao \(\Delta ABG\) và \(\Delta CBG\) là 18/25
=> Tỉ số diện tích \(\Delta ABG\) và \(\Delta CBG\) là 18/25
Diện tích \(\Delta ABG\) là
\(18\times\frac{18}{25}=12,96cm^2\)
Diện tích hình thang ABCD là
12,96 + 18 + 25 + 18 = 73,96 cm2
Hình bạn tự vẽ nha
HOK TỐT !!!!!!!!!!!!!!