\(\widehat{A}\) =  \(\widehat{CBD}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABD và ΔBDC có 

\(\widehat{ABD}=\widehat{BDC}\)

\(\widehat{A}=\widehat{CBD}\)

Do đó: ΔABD\(\sim\)ΔBDC

Suy ra: BD/DC=AB/BD

hay \(BD^2=AB\cdot CD\)

2 tháng 7 2019

Sai đề rồi bn nhé :\(\widehat{A}+\widehat{D}=\widehat{B}+\widehat{C}\) 

Vì AB//CD \(\Rightarrow\widehat{A}+\widehat{D}=180\) ;\(\widehat{B}+\widehat{C}=180\) 

=>đpcm

19 tháng 11 2022

a: góc C=180-100=80 độ

góc A=180-60=120 độ

b; MN=(AB+CD)/2

=>AB+CD=2MN

=>CD=2*15-10=20cm

31 tháng 7 2020

A B C D H

Vì AB // CD nên \(\widehat{B}+\widehat{C}=180^o\)

Mà \(\widehat{B}=\widehat{C}\)

\(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^o}{2}=90^o\)

\(\Rightarrow\)Tứ giác ABCH có 3 góc vuông là hình chữ nhật

Ta có : \(DH=DC-HC\)

                    \(=DC-AB\)  (Vì AB = HC)

                     \(=4-3\)

                      \(=1\left(cm\right)\)

Lại có : \(\hept{\begin{cases}\widehat{A}=3\widehat{D}\\\widehat{A}+\widehat{D}=180^o\left(slt\right)\end{cases}\Rightarrow}\hept{\begin{cases}\widehat{A}=135^o\\\widehat{D}=45^o\end{cases}}\)

\(\Rightarrow\)△AHD vuông tại H có ^ADH = 45o

\(\Rightarrow\)△AHD vuông cân tại H

\(\Rightarrow\)AH = DH

\(\Rightarrow\)AH = 1 (cm)

Vậy \(S_{ABCD}=\frac{\left(AB+CD\right)\cdot AH}{2}=\frac{\left(4+3\right)\cdot1}{2}=3,5\left(cm^2\right)\)

31 tháng 7 2020

Xét hình thang ABCD có \(AB//CD\)(gt) có:

\(\widehat{A}+\widehat{D}=180^0\)(trong cùng phía)

Mà \(\widehat{A}=3\widehat{D}\left(gt\right)\)

\(\Rightarrow3\widehat{D}+\widehat{D}=180^0\)

\(\Leftrightarrow4\widehat{D}=180^0\)

\(\Leftrightarrow\widehat{D}=45^0\)

\(\Rightarrow\widehat{A}=3.45^0=135^0\)

Ta có:\(AB//CD\left(gt\right)\)\(\Rightarrow\widehat{B}+\widehat{C}=180^0\)

Mà \(\widehat{B}=\widehat{C}\left(gt\right)\)\(\Rightarrow\widehat{B}+\widehat{B}=180^0\)

                                 \(\Leftrightarrow2\widehat{B}=180^0\)

                                 \(\Leftrightarrow\widehat{B}=90^0\Rightarrow\widehat{C}=90^0\)

Xét tứ giác ABCH có \(\widehat{B}=\widehat{C}=\widehat{H}=90^0\left(cmt\right)\)

\(\Rightarrow\)Tứ giác ABCH là hình chữ nhật (DHNB)

\(\Rightarrow AB=CH=3cm\)(t/c)  \(\Rightarrow DH=CD-CH=4-3=1\left(cm\right)\)

Xét \(\Delta AHD\)có \(\widehat{H}=90^0,\widehat{D}=45^0\left(cmt\right)\)

\(\Rightarrow\Delta AHD\)vuông cân tại A (DHNB) \(\Rightarrow AH=DH=1cm\)(t/c)

Diện tích hình thang ABCD có:

\(S_{ABCD}=\frac{\left(AB+CD\right)\times AH}{2}=\frac{\left(3+4\right)\times1}{2}=3,5\left(cm^2\right)\)

Đáp số \(3,5cm^2\)

Học tốt 

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:
Kẻ đường cao $DH$ $(H\in BC$)

Tứ giác $ADHB$ có 3 góc vuông \((\widehat{A}=\widehat{B}=\widehat{H}=90^0\) ) nên là hình chữ nhật

\(\Rightarrow DH=AB; AD=BH\)

$CD$ bằng tổng 2 đáy, hay $CD=AD+BC$

Áp dụng định lý Pitago cho các tam giác vuông:

\(CD^2=DH^2+CH^2=AB^2+(BC-BH)^2=AB^2+(BC-AD)^2\)

\(\Leftrightarrow (AD+BC)^2=AB^2+(BC-AD)^2\)

\(\Leftrightarrow 2AD.BC=AB^2-2BC.AD\)

\(\Leftrightarrow AD.BC=\frac{AB^2}{4}=\frac{a^2}{4}\) (đpcm phần b)

\(\Leftrightarrow AD.BC=\frac{a}{2}.\frac{a}{2}=AM.MB\)

\(\Leftrightarrow \frac{AM}{BC}=\frac{AD}{BM}\)

Xét tam giác $AMD$ và $BCM$ có:

\(\widehat{MAD}=\widehat{CBM}=90^0; \frac{AM}{BC}=\frac{AD}{BM}\) (cmt)

\(\Rightarrow \triangle AMD\sim \triangle BCM(c.g.c)\Rightarrow \widehat{AMD}=\widehat{BCM}=90^0-\widehat{BMC}\)

\(\Rightarrow \widehat{AMD}+\widehat{BMC}=90^0\)

\(\Rightarrow \widehat{CMD}=180^0-(\widehat{AMD}+\widehat{BMC})=90^0\) (đpcm phần a)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Hình vẽ:
Những hằng đẳng thức đáng nhớ

6 tháng 9 2020

Vì AB // CD nên \(\hept{\begin{cases}\widehat{A}+\widehat{D}=180^0\\\widehat{B}+\widehat{C}=180^0\end{cases}}\)(định lí hình thang)

Mà \(\widehat{A}=5\widehat{D}\)=> \(\widehat{5D}+\widehat{D}=180^0\)=> \(6\widehat{D}=180^0\)=> \(\widehat{D}=30^0\)(1)

Thay (1) vào \(\widehat{A}=5\widehat{D}\)ta có :

\(\widehat{A}=5\cdot30^0=150^0\)

Lại có : \(\widehat{B}=4\widehat{C}\)

=> \(4\widehat{C}+\widehat{C}=180^0\)

=> \(5\widehat{C}=180^0\)

=> \(\widehat{C}=36^0\)(2)

Thay (2) vào \(\widehat{B}=4\widehat{C}\)ta có :

=> \(\widehat{B}=4\cdot36^0=144^0\)

Vậy : ^A = 1500 , ^B = 1440 , ^C = 360 , ^D = 300