Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E
a ) Kẻ BE vuông góc với BD
Xét tứ giác ABED có \(\widehat{DAB}=\widehat{ADE}=\widehat{DEB}=90^o\)
\(\Rightarrow\) ABED là hình vuông
\(\Rightarrow AB=DE\left(1\right)\)
Ta có : CD = DE + EC = 2AB ( 2 )
Từ ( 1 ) và ( 2) \(\Rightarrow DE=EC=AB\)
\(\Rightarrow\) BE là trung tuyến của tam giác BCD
Xét tam giác BCD có BE vừa là đường cao vừa là trung tuyến
\(\Rightarrow\) Tam giác BCD cân tại B
b ) Ta có tứ giác ABED là hình vuông ( chứng minh trên )
\(\Rightarrow\) BD là tia phân giác của \(\widehat{ADE}\) ( tính chất đường chéo của hình vuông )
\(\Rightarrow\) đpcm
Chúc bạn học tốt !!!
A B H D C 1 2
a,kẻ \(AH\bot DC(H\in BC)\)
cm được ABHD là hình chữ nhật suy ra AB=HD=2cm
Mà DH+HC=DC
\(\Rightarrow HC=DC-DH=4-2=2\Rightarrow HC=DH=2cm\)
\(\Rightarrow \Delta DBC\) cân tại B
\(\Rightarrow \angle D_1=\angle C=45^o\Rightarrow \angle DBC=90^o\)
\(\Rightarrow\Delta DBC \) vuông cân tại B
b,Ta có \(\angle D_1+\angle D_2=90^o\Rightarrow \angle D_2=90^o-\angle D_1=90^o-45^o=45^o\)
\(\Rightarrow \angle D_1=\angle D_2 \Rightarrow\) DB là phân giác góc D
c,Ta tính được BH=DH=CH=2cm
\(\Rightarrow S_{ABCD}=\dfrac{1}{2}BH(AB+DC)=\dfrac{1}{2}.2.(2+4)=6cm^2\)
1) do tg ABCD là hình thang cân nên: gocsADC =góc BCD=60
mặt khác AB //CD =>BAD=180-ADB=180-60=120
mà BAD=ABC(vì tg ABCD là hthang cân ) =>ABC=120
2)theo bài ra ta có : AD=AB =>tam giác ADB cân tại A=>ABD =ADB (1)
mặt khác : AB//CD =>ABD=BDC (so le trong) (2)
từ (1) và (2) =>ADB =BDC => BD là tia phân giác của ADC
3) ta có ADB =BDC =ADC/2 =60/2=30 (vì BD là tia phân giác của ADC)
xét tam giác BDC có :BDC + BCD +DBC=180 (ĐL)
mà BDC =30 (cmt) , BCD =60 (câu 1) nên DBC =180-30-60=90 =>tam giác BDC vuông tại B
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Chúc bạn học tốt ^^
Bài 2
1,ABCD là hình thang cân => góc adc=góc bcd=60 độ (1)
ad//be, ab//de=> abed là hình bình hành=> ad=be mà ad=bc=> be=bc(2)
từ (1) và(2) => tam giác bec đều
2,ta có ab=de=15cm, =>ec=dc-de=49-15=34cm=bc
chu vi hình thang abcd là:
15+49+34+34=132cm
3,kẻ đường cao bh của tam giác bcd, đường cao dk của tam giác abd
ta có bh=dk
Sabd/Sbcd=dk.ab/2 : (bh.dc/2)=ab/dc=15/49
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
Bài mình làm cực chi tiết nên có một số chỗ viết tắt: gt:giả thiết, dhnb:dấu hiệu nhận biết, đ/n:định nghĩa, cmt:chứng minh trên, t/c: tính chất
3. a) Vì tam giác ABC vuông cân ở A (gt)=> góc ACB=45 độ.
tam giác ACE vuông cân ở E (gt)=> góc EAC=45 độ.
mà góc EAC và góc ACB ở vị trí so le trong.
Từ 3 điều trên=> AE//BC (dhnb) => AECB là hình thang (đ/n) mà góc AEC=90 độ (tam giác ACE vuông cân) => AECB là hình thang vuông.
b) Vì AECB là hình thàng vuông(cmt) mà góc AEC= 90 độ (tam giác ACE vuông cân). => góc ACE=90 độ.
Có: góc ABC= 45 độ (cmt).
tam giác AEC vuông cân ở E (gt)=> góc EAC=45 độ (t/c) mà góc BAC+ góc EAC= góc BAE và góc BAC= 90 độ (tam giác BAC vuông cân)=> góc BAE= 90 độ=45 độ= 135 độ.
Gọi AD là đường trung trực tam giác ABC=> AD=BD=BC=1/2BC=1/2*2=1 cm (chỗ này là tính chất tam giác vuông: trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền nhé). [đây là điều thứ nhất suy ra được]
=> AD vông góc với BC. [đây là điều thứu hai suy ra được]
Xét tam giác ADC vuông tại D (AD vuông góc BC) và tam giác AEC vuông tại E (gt) có: Cạnh huyền AC chung. Góc EAC= góc BCA (cmt) => tam giác ADC= tam giác CEA (ch-gn) => AD= EC ( 2 cạnh tương ứng) mà AD=1cm(cmt) => AE=1cm.
Xét tam giác ADB vuông (AD vuông góc BC) có: AD2+ BD2 = AB2 ( định lí Pytago)
12 + 12 =AB2 => 1+1=AB2 => Ab bằng căn bậc hai cm.
A B C D H
1/ Từ B kẻ BH vuông góc với CD tại H
Dễ thấy tam giác BDC cân tại B vì DH = HC
Mà góc C = 45 độ => Tam giác BDC vuông cân
2/ Dễ dàng chứng minh được ABHD là hình vuông
=> BD là tia phân giác góc D
3/ \(S_{ABCD}=\frac{1}{2}\left(AB+CD\right).AD=\frac{1}{2}\left(2+4\right).2=8\left(cm^2\right)\)
help me