Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2016

Trong 3 tia ox, oy, oz tia oy nằm giữa 2 tia còn lại vì \(\widehat{xoy}\)<\(\widehat{xoz}\)(30o<110o)

Vì tia oy nằm giữa 2 tia còn lại nên:

             \(\widehat{xoy}\)+\(\widehat{yoz}\)=\(\widehat{xoz}\)

            30o+\(\widehat{yoz}\)=110o

                    \(\widehat{yoz}\)=110o-30o=800

                  Vậy \(\widehat{yoz}\)=80o

Vì tia ot là tia phân giác của \(\widehat{yoz}\)nên:

             \(\widehat{toy}\)=\(\widehat{yoz}\)/2=80o/2=40o

Vậy tia\(\widehat{zot}\)=\(\widehat{toy}\)(=40o)

Vì \(\widehat{xoz}\)>\(\widehat{toy}\)(110o<40o) nêm tia oy nằm giữa 2 tia ox và ot:

             \(\widehat{xot}\)+\(\widehat{zot}\)=\(\widehat{xoz}\)

            \(\widehat{xot}\)+40o=110o

            \(\widehat{xot}\)        =110o-40o=70o

Vậy \(\widehat{xot}\)=70o

AH
Akai Haruma
Giáo viên
15 tháng 1 2017

Lời giải:

a) Gọi phương trình đường thẳng có dạng $y=ax+b$ $(d)$

\(B,C\in (d)\Rightarrow \left\{\begin{matrix} 3=2a+b\\ -3=-4a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=1\\ b=1\end{matrix}\right.\Rightarrow y=x+1\)

Vậy PT đường thẳng chứa cạnh $BC$ có dạng $y=x+1$

b) Tương tự, ta lập được phương trình đường thẳng chứa cạnh $AC$ là \((d_1):y=\frac{2x}{5}-\frac{7}{5}\).

Gọi PT đường cao đi qua $B$ của tam giác $ABC$ là \((d'):y=ax+b\)

\((d')\perp (d_1)\Rightarrow \frac{2}{5}a=-1\Rightarrow a=\frac{-5}{2}\).

Mặt khác \(B\in (d')\Rightarrow 3=\frac{-5}{2}.2+b\Rightarrow b=8\)

\(\Rightarrow (d'):y=\frac{-5x}{2}+8\)

c) Gọi điểm thỏa mãn ĐKĐB là $M(a,b)$

Ta có: \(M\in (\Delta)\Rightarrow 2a+b-3=0\) $(1)$

$M$ cách đều $A,B$ \(\Rightarrow MA^2=MB^2\Rightarrow (a-1)^2+(b+1)^2=(a-2)^2+(b-3)^2\)

\(\Leftrightarrow 2-2a+2b=13-4a-6b\)

\(\Leftrightarrow 11-2a-8b=0(2)\)

Từ \((1);(2)\Rightarrow \left\{\begin{matrix} a=\frac{13}{14}\\ b=\frac{8}{7}\end{matrix}\right.\Rightarrow M\left ( \frac{13}{14};\frac{8}{7} \right )\)

15 tháng 1 2017

con nếu đề bài cho 1 điểm và phương trình đường thẳng của tam giác muốn tìm phương trình đường cao còn lại vầ các cạnh thj làm thế nào

Bài 3:

Do a và b đều không chia hết cho 3 nhưng khi chia cho 3 thì có cùng số dư nên\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a=3n+1\\b=3m+1\end{matrix}\right.\\\left\{{}\begin{matrix}a=3n+2\\b=3m+2\end{matrix}\right.\end{matrix}\right.\)

TH1:\(\left\{{}\begin{matrix}a=3n+1\\b=3m+1\end{matrix}\right.\)

\(\Rightarrow ab-1=\left(3n+1\right)\left(3m+1\right)-1\)

\(\Rightarrow ab-1=9nm+3m+3n+1-1=9nm+3m+3n⋮3\) nên là bội của 3 (đpcm)

TH2:\(\left\{{}\begin{matrix}a=3n+2\\b=3m+2\end{matrix}\right.\)

\(\Rightarrow ab-1=\left(3n+2\right)\left(3m+2\right)-1\)

\(\Rightarrow ab-1=9nm+6m+6n+4-1=9nm+6m+6n+3⋮3\) nên là bội của 3 (đpcm)

Vậy ....

Bài 2:

\(B=\frac{1}{2010.2009}-\frac{1}{2009.2008}-\frac{1}{2008.2007}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow B=\frac{1}{2010.2009}-\left(\frac{1}{2009.2008}+\frac{1}{2008.2007}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

Đặt A=\(\frac{1}{2009.2008}+\frac{1}{2008.2007}+...+\frac{1}{3.2}+\frac{1}{2.1}\)

\(\Rightarrow A=\frac{2009-2008}{2009.2008}+\frac{2008-2007}{2008.2007}+...+\frac{3-2}{3.2}+\frac{2-1}{2.1}\)

\(\Rightarrow A=\frac{2-1}{2.1}+\frac{3-2}{3.2}+...+\frac{2008-2007}{2008.2007}+\frac{2009-2008}{2009.2008}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2008}-\frac{1}{2009}\)

\(\Rightarrow A=1-\frac{1}{2009}\)

\(\Rightarrow B=\frac{1}{2010.2009}-A=\frac{1}{2010.2009}-\left(1-\frac{1}{2009}\right)\)

\(\Rightarrow B=\frac{1}{2010.2009}+\frac{1}{2009}-1=\frac{2011}{2010.2009}-1\)

13 tháng 3 2016

Thay b + c = a vào ta có :

\(\frac{a}{b}.\frac{a}{c}=\frac{b+c}{b}.\frac{b+c}{c}=\frac{\left(b+c\right)^2}{bc}\) (1)

và \(\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a.\left(b+c\right)}{bc}=\frac{\left(b+c\right).\left(b+c\right)}{bc}=\frac{\left(b+c\right)^2}{bc}\) (2)

Từ (1) và (2) suy ra \(\frac{a}{b}.\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)

13 tháng 3 2016

Có :  b+c=a

Thay vào , ta được:

a/b=a/c=> b+c/b.b+c/c=(b+c)2/bc và a/b+a/c=ac+ad/bc=a(b+c)/bc=(bc+c)(b+c)/bc=(b+c)2/bc

Từ trên ta có thể suy ra rằng :

a/b.a/c=a/b+a/c

27 tháng 4 2016

a) Chiều dài mảnh vườn hình chữ nhật là:

      20x1,5=30 (m)

Diện tích mảnh vườn là:

      29 x 30=600( m2)

b) Diện tích trồng cây ăn quả là:

      (180:2)x5=450 (m2)

c) Diện tích trồng hoa là:

    600-450=150 (m)

Diện tích trồng hoa chiếm số phần trăm diện tích mảnh vườn là:

     (150 : 600)x100=25% diện tích mảnh vườn

Đáp số : a) 600m2

              b) 450m2

              c) 25%

27 tháng 4 2016

a. Chiều dài mảnh vườn đó là

         20x1,5=30(m)

Diện tích mảnh vườn đó là

20x30=600(m2)

b. Ha ! ha tự làm nhéhaha

 

4 tháng 2 2016

lớp mấy vậy bạn

4 tháng 2 2016

40 - - là s z 

20 tháng 3 2016

Thay a,b,c lần lượt vào biểu thức...

Tính được kết quả:

a) A= \(-\frac{7}{10}\)

b) B= \(-\frac{2}{7}\)

c) C= 0

20 tháng 3 2016

a) Thay a= \(-\frac{6}{5}\)vào BT A ta có:

\(\left(-\frac{6}{5}\right).\frac{1}{2}-\left(-\frac{6}{5}\right).\frac{2}{3}+\left(-\frac{6}{5}\right).\frac{3}{4}\)\(-\frac{7}{10}\)

Các bài dưới lần lượt thế thôi bạn

17 tháng 3 2016

a) \(\frac{1}{n}\) - \(\frac{1}{n+1}\) = \(\frac{n+1}{n\left(n+1\right)}\) - \(\frac{n}{n\left(n+1\right)}\) = \(\frac{1}{n\left(n+1\right)}\) = \(\frac{1}{n}\) . \(\frac{1}{n+1}\) =>đpcm

 

17 tháng 3 2016

b) A= \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\)+...+\(\frac{1}{8}\) - \(\frac{1}{9}\) +\(\frac{1}{9}\)

\(\frac{1}{2}\) + \(\frac{1}{9}\)\(\frac{11}{18}\)