K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

Một đường thẳng muốn vuông góc với một mặt phẳng thì phải vuông góc với 2 đường thẳng chéo nhau chứ bạn? ở ba câu trên bạn mới chứng minh nó vuông với 1 đường mà

 

13 tháng 8 2016

+)Gọi H là chân đường cao hạ từ A - -> BC 
Tam giác AHC vuông tại H nên 
AH = √(a² -a²/4) = a√3/2 
Diện tích tam giác ABC là S(ABC) = 1/2.AH.BC= 1/2.a²√3/2 
(dvdt) 
+)Từ S hạ SK ┴ AH , Kết hợp AH ┴ BC ta có SK ┴ (ABC) 
Hay SK là đường cao của hình chóp đều SABC 
+) Bài cho góc giữa các mặt bên với đáy là 60 độ nên 
góc giữa (SH,HK) = 60 độ 
Tam giác vuông SKH có SK = HK.tan(60) 
Tam giác vuông BKH có HK = a/2.tan(30) = a√3/6 
- - > SK = a√3/6.tan(60) = a/2 
Vậy V(SABC) =1/3.SK.S(ABC) = 1/3.a/2.1/2.a²√3/2 
= a³√3/24 (dvtt)

NV
17 tháng 5 2019

Nếu đề bài hoàn toàn chính xác thì tất cả các đáp án đều sai, tâm mặt cầu sẽ là chính trung điểm của SC nên \(R=\frac{SC}{2}=\frac{c}{2}\)

Còn nếu dữ kiện đề bài là \(SA=a,AB=b,BC=c\) (và các hoán vị của bộ 3 đoạn thẳng này) thì đáp án là \(R=\frac{1}{2}\sqrt{a^2+b^2+c^2}\)

7 tháng 4 2016

A E M B C H N S

Xét tam giác ABC có : \(BC=AB.\tan60^0=2a\sqrt{3}\Rightarrow S_{\Delta ABC}=2a^2\sqrt{3}\)

\(V_{S.ABCD}=\frac{1}{3}SA.S_{\Delta ABC}=\frac{1}{3}a\sqrt{3}.2a^2\sqrt{3}=2a^3\)

- Gọi N là trung điểm cạnh SA. Do SB//(CMN) nên d(SB. CM)=d(SB,(CMN))

                                                                                                 =d(B,(CMN))

                                                                                                 =d(A,(CMN))

- Kẻ \(AE\perp MC,E\in MC\) và kẻ \(AH\perp NE,H\in NE\), ta chứng minh được \(AH\perp\left(CMN\right)\Rightarrow d\left(A,\left(CMN\right)\right)=AH\)

Tính \(AE=\frac{2S_{\Delta AMC}}{MC}\) trong đó :

                              \(S_{\Delta AMC}=\frac{1}{2}AM.AC.\sin\widehat{CAM}=\frac{1}{2}a.4a\frac{\sqrt{3}}{2}=a^2\sqrt{3};MC=a\sqrt{13}\)

                             \(\Rightarrow AE=\frac{2a\sqrt{3}}{\sqrt{13}}\)

Tính được \(AH=\frac{2a\sqrt{3}}{\sqrt{29}}\Rightarrow d\left(A,\left(CMN\right)\right)=\frac{2a\sqrt{3}}{\sqrt{29}}\Rightarrow d\left(SB,CM\right)=\frac{2a\sqrt{3}}{\sqrt{29}}\)

Câu 1 : Cho hình chóp có các cạnh bên bằng nhau và bằng a , độ dài đường cao bằng h . Tính bán kính mặt cầu ngoại tiếp hình chóp đã cho . A. R = \(\frac{a^2}{2h}\) B. R = \(\frac{2a^2}{h}\) C. R = \(\frac{2h^2}{a}\) D. R = \(\frac{h^2}{2a}\) Câu 2 : Cho hình chóp S.ABCD có cạnh đáy a , cạnh bên bằng \(\frac{a\sqrt{3}}{2}\) . Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD A....
Đọc tiếp

Câu 1 : Cho hình chóp có các cạnh bên bằng nhau và bằng a , độ dài đường cao bằng h . Tính bán kính mặt cầu ngoại tiếp hình chóp đã cho .

A. R = \(\frac{a^2}{2h}\) B. R = \(\frac{2a^2}{h}\) C. R = \(\frac{2h^2}{a}\) D. R = \(\frac{h^2}{2a}\)

Câu 2 : Cho hình chóp S.ABCD có cạnh đáy a , cạnh bên bằng \(\frac{a\sqrt{3}}{2}\) . Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD

A. \(\frac{3a}{2}\) B. \(\frac{a}{2}\) C. a D. \(\frac{3a}{4}\)

Câu 3 : Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, AB = \(a\sqrt{2}\) , SA = SB = SC . Góc giữa SA và (ABC) bằng 600 . Tính diện tích mặt cầu ngoại tiếp S.ABC

A. \(\frac{16\Pi a^2}{9}\) B. \(\frac{16\Pi a^2}{3}\) C. \(4\Pi a^2\) D. \(\frac{64\Pi a^2}{3}\)

Câu 4 : Cho mặt cầu (S) có bán kính R = \(\sqrt{3}\) . Xét các điểm A ,B , C , D nằm trên mặt cầu (S) sao cho AB , AC , AD đôi một vuông góc với nhau . Thể tích khối tứ diện ABCD có giá trị lớn nhất bằng

A. \(\frac{8}{3}\) B. 8 C. 4 D. \(\frac{4}{3}\)

help me !!!!!!

3
NV
30 tháng 8 2020

4.

Gọi M là trung điểm CD, qua M kẻ đường thẳng song song AB

Gọi N là trung điểm AB, qua N kẻ đường thẳng song song AM

Gọi giao của 2 đường thẳng trên là O \(\Rightarrow\) O là tâm (S)

\(\Rightarrow AO=R=\sqrt{3}\)

Đặt \(AB=x;AC=y;AD=z\)

\(AN=\frac{AB}{2}=\frac{x}{2}\) ; \(AM=\frac{CD}{2}=\frac{1}{2}\sqrt{AC^2+AD^2}=\frac{1}{2}\sqrt{y^2+z^2}\)

Áp dụng Pitago: \(AO^2=AN^2+AM^2\)

\(\Rightarrow\frac{x^2}{4}+\frac{1}{4}\left(y^2+z^2\right)=3\Rightarrow x^2+y^2+z^2=12\)

\(V=\frac{1}{3}xyz\le\frac{1}{3}\left(\frac{x+y+z}{3}\right)^3\le\frac{1}{3}\left(\frac{\sqrt{3\left(x^2+y^2+z^2\right)}}{3}\right)^3=\frac{8}{3}\)

NV
30 tháng 8 2020

2.

Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\)

\(AC=a\sqrt{2}\Rightarrow AO=\frac{1}{2}AC=\frac{a\sqrt{2}}{2}\)

\(SO=\sqrt{SA^2-OA^2}=\frac{a}{2}\)

Áp dụng công thức từ câu 1:

\(R=\frac{SA^2}{2SO}=\frac{3a}{4}\)

3.

\(BC=AB\sqrt{2}=2a\)

Gọi H là hình chiếu của S lên (ABC) \(\Rightarrow\) H đồng thời là tâm đường tròn ngoại tiếp đáy

\(\Rightarrow\) H là trung điểm BC

\(\Rightarrow\widehat{SAH}=60^0\Rightarrow SH=AH.tan60^0=\frac{BC}{2}tan60^0=a\sqrt{3}\)

\(SA=\frac{AH}{cos60^0}=2a\)

\(\Rightarrow R=\frac{SA^2}{2SH}=\frac{2\sqrt{3}a}{3}\)

\(S=4\pi R^2=\frac{16\pi a^2}{3}\)

31 tháng 3 2016

A B C D H K S

Hạ \(SH\perp BC\Rightarrow\left(SBC\right)\perp\left(ABC\right)\)

                      \(\Rightarrow SH\perp BC;SH=SB.\sin\widehat{SBC}=a\sqrt{3}\)

Diện tích : \(S_{ABC}=\frac{12}{\boxtimes}BA.BC=6a^2\)

Thể tích : \(V_{s.ABC}=\frac{1}{3}S_{ABC}.SH=2a^3\sqrt{3}\)

Hạ \(HD\perp AC\left(D\in AC\right),HK\perp SD\left(K\in SD\right)\)

\(\Rightarrow HK\perp\left(SAC\right)\Rightarrow HK=d\left(H,\left(SAC\right)\right)\)

\(BH=SB.\cos\widehat{SBC}=3a\Rightarrow BC=4HC\)

\(\Rightarrow d\left(B,\left(SAC\right)\right)=4d\left(H,SAC\right)\)

Ta có : \(AC=\sqrt{BA^2+BC^2}=5a;HC=BC-BH=a\)

\(\Rightarrow HD=BA.\frac{HC}{AC}=\frac{3a}{5}\)

\(HK=\frac{SH.HS}{\sqrt{SH^2+HD^2}}=\frac{3a\sqrt{7}}{14}\)

Vậy \(d\left(B,\left(SAC\right)\right)=4HK=\frac{6a\sqrt{7}}{7}\)

Câu 1 : Tính thể tích V của khối chóp S.ABC biết tam giác ABC vuông tại B , \(SA\perp\left(ABC\right)\) và SA = AB = a , BC = 2a A. V = \(a^3\) B. V = 2a3 C. V = \(\frac{1}{3}a^3\) D. V = \(\frac{2}{3}a^3\) Câu 2 : Tính thể tích V của khối chóp tam giác đều S.ABC biết cạnh đáy bằng a , cạnh bên \(SA\perp\left(ABC\right)\) và SA = \(2a\sqrt{3}\) A. V = \(\frac{1}{2}a^3\) B. V = \(\frac{3}{2}a^3\) ...
Đọc tiếp

Câu 1 : Tính thể tích V của khối chóp S.ABC biết tam giác ABC vuông tại B , \(SA\perp\left(ABC\right)\) và SA = AB = a , BC = 2a

A. V = \(a^3\) B. V = 2a3 C. V = \(\frac{1}{3}a^3\) D. V = \(\frac{2}{3}a^3\)

Câu 2 : Tính thể tích V của khối chóp tam giác đều S.ABC biết cạnh đáy bằng a , cạnh bên \(SA\perp\left(ABC\right)\) và SA = \(2a\sqrt{3}\)

A. V = \(\frac{1}{2}a^3\) B. V = \(\frac{3}{2}a^3\) C. V = \(\frac{1}{3}a^3\) D. V = \(\frac{2}{3}a^3\)

Câu 3 : Tính thể tích V của khối chóp S.ABCD có đáy ABCD là hình vuông , BD = 2a , cạnh bên \(SA\perp\left(ABC\right)\) và SA = SC

A. V = 4a3 B. V = \(\frac{1}{3}a^3\sqrt{2}\) C. V = \(a^3\sqrt{2}\) D. V = \(\frac{4}{3}a^3\)

Câu 4 : Tính thể tích V của khối chóp S.ABCD là hình chữ nhật , AB = a , AD = \(a\sqrt{3}\) , \(SA\perp\left(ABC\right)\) và SC tạo với mặt phẳng đáy một góc 600

A. V = \(\frac{2}{3}a^3\) B. V = \(\frac{1}{3}a^3\sqrt{2}\) C. V = 6a3 D. V = 2a3

1
NV
4 tháng 8 2020

1.

\(V=\frac{1}{3}SA.\frac{1}{2}AB.BC=\frac{1}{6}.a.a.2a=\frac{a^3}{3}\)

2.

\(V=\frac{1}{3}SA.S_{ABC}=\frac{1}{3}.2a\sqrt{3}.\frac{a^2\sqrt{3}}{4}=\frac{a^3}{2}\)

P/s: chóp này là chóp "có đáy là tam giác đều" chứ không phải "chóp tam giác đều"

Hai loại này khác xa nhau đấy, ko lộn xộn nhầm lẫn được đâu

3.

Câu này đề sai

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp AC\Rightarrow\Delta SAC\) vuông tại A

\(\Rightarrow SC>SA\) (cạnh huyền luôn lớn hơn cạnh góc vuông)

Do đó đề cho \(SA=SC\) là vô lý

4.

\(AC=BD=\sqrt{AB^2+AD^2}=2a\)

\(\widehat{SCA}=60^0\Rightarrow SA=SC.tan60^0=2a\sqrt{3}\)

\(V=\frac{1}{3}SA.AB.AD=\frac{1}{3}.2a\sqrt{3}.a.a\sqrt{3}=2a^3\)