Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A)
~Ta có AB // DC ( ABCD là hbh )
=> BM // CN ( M THuộc AB , N thuộc DC ) (1)
~Ta có M là trung điểm AB , N là trung điểm DC => MN là đường trung bình của hbh ABCD => MN // BC (2)
Từ (1) và (2) => BCMN là hbh , (*)
Ta có : M là trung điểm AB => BM = 1/2 AB
Lại có BC = 1/2 AB ( giả thuyết )
=> BM = BC (**)
từ (*) và (**) => BCMN là hthoi. ( hbh có 2 cạnh bên bằng nhau là hình thoi )
B)
~ Ta có MB // DN ( AB // DC ) (3 )
có MB = 1/2 AB , DN = 1/2 DC
=> MB = DN ( vì AB = DC ) (4)
từ (3) và (4) => DMBN là hbh
C)
Ta có : E là trung điểm MD ( ADNM là hbh )
F là tđ MC ( MBNC là hbh )
xét tam giác MDC có : E là tđ MD , F là tđ MC => EF là dd` trung trực tam giác DMC
=> EF // DC => EFCD là hình thang
Time anh k cho phép nên anh chưa giải câu D được. nếu cần thì ib anh nha ^^
a,Ta co : AM=MB
Va : DN=NC
Ma AB=DC => AM=DN
Va AB//DC=>AM//DN
=>AMND la HBH
Ta lai co : AB=2AD
Hay AD=1/AB
=>AD=AM
Mà trong hình bình hành AMND co AM=AD
Thi AMND là hình thoi
a) Xét tứ giác AMCN có AM // NC ( ABCD là hbh)
AM = NC (gt)
\(\Rightarrow\) AMCN là hbh (dấu hiệu nhận biết)
Xét tứ giác AMND có AM // ND ( ABCD là hình bình hành)
AM = ND (gt)
\(\Rightarrow\) AMND là hbh ( dấu hiệu nhận biết)
c) CMTT : MBCN là hbh có CM cắt BN tại K
\(\Rightarrow\) MK = KC
Hbh AMND có I là giao của AN và DM
\(\Rightarrow\) IM = ID
Xét tam giác MCD có MK = KC (cmt)
IM = ID (cmt)
\(\Rightarrow\) IK là đường trung bình của tam giác MCD ( tính chất của đường trung bình trong tam giác)
\(\Rightarrow\) IK // CD (đpcm)
a: Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
b: Hình bình hành AMND có AM=AD
nên AMND là hình thoi
c: Xét tứ giác ANKQ có
D là trung điểm của NQ
D là trung điểm của AK
Do đó: ANKQ là hình bình hành
chit