\(\frac{5}{9}\).Tìm hai số đó.

Các bạn ơi khô...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Số bé là :

​72 : ( 9 - 5 ) x 5 = 90

​Số lớn là :

​90 + 72 = 162

​Đáp số : Số bé : 90 ; Số lớn : 162

​Ai mình thì mình lại **** nha ^.^

26 tháng 7 2016

Số bé là:

      72 : ( 9 - 5 ) x 5 = 90

Số lớn là:

      72 + 90 = 162

                 Đáp số:Số bé:90

                            Số lớn:162

26 tháng 7 2016

                          Giai

   Tong so phan bang nhau la :

        6 - 1 = 5 ( phan )

   So cay cam trong vuon co la :

         ( 170 : 5 ) x 1 = 34 ( cay cam )

    So cay dua trong vuon co la  :

         170 + 34 = 204  ( cay dua )

                Dap so : - Cay cam : 34 cay .

                             - Cay dua  : 204 cay .

            minh nha

26 tháng 7 2016

Vườn đó có số cây cam là:

           170 : ( 6  - 1 ) x 1 = 34 ( cây )

Vườn đó có số cây dứa là:

            170 + 34 = 204 ( cây )

                    Đáp số:34 Cây cam

                               204 Cây dứa

chi ơi đề đây nhé , các bạn giải được thì giải không được thì thôi, mình chỉ viết đề cho bạn mình thôi mong các bạn thông cảm nhébài 1)cho \(x,y\in Q\) thỏa mãn \(\left(x+y\right)^3=xy\left(3x+3y+2xy\right)\) chứng minh rằng \(\sqrt{1-\frac{1}{xy}}\) là số hữ tỉbài 2 )cho a,b,c là các số hữu tỉ thỏa mãn ab+bc+ca=1. chứng minh rằng \(B=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\in Q\)chú ý...
Đọc tiếp

chi ơi đề đây nhé , các bạn giải được thì giải không được thì thôi, mình chỉ viết đề cho bạn mình thôi mong các bạn thông cảm nhé

bài 1)

cho \(x,y\in Q\) thỏa mãn \(\left(x+y\right)^3=xy\left(3x+3y+2xy\right)\) chứng minh rằng \(\sqrt{1-\frac{1}{xy}}\) là số hữ tỉ

bài 2 )

cho a,b,c là các số hữu tỉ thỏa mãn ab+bc+ca=1. chứng minh rằng \(B=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\in Q\)

chú ý chị chi em viết cho chị mà chị phải trả công em chứ còn thùy linh là khác 

bài 3) 

cho a,b,c là các số hữ tỉ thỏa mãn ab+bc+ca=1. tính \(C=a.\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+...\) (n0s theo quy luật chi nhé tớ biết đầu cậu thông minh nên tớ viết thế thôi)

bài 4) 

cho a,b,c >0 thỏa mãn abc=1. tính \(A=\frac{\sqrt{a}}{1+\sqrt{a}+\sqrt{ab}}+...\) (cái này cũng theo quy luật)

bài 5) 

giải các phương trình vô tỉ sau 

1,2 không phải làm nên không chép nữa

3)   \(\sqrt{x^2-10x+25}-3x=1\) 

4)    \(x-\frac{1}{2}\sqrt{x^2-8x+16}=2\)

5)   \(\sqrt{x^2-16}+\sqrt{x^2-5x+4}=0\)

6) chú ý đây viết mỏi tay luôn nhớ mai đãi bánh mì với kem đấy 

8
5 tháng 9 2017

lần sau đăng từng câu hỏi lên thôi còn như thế này ms nhìn đã mỏi mắt ns đến j lm

5 tháng 9 2017

đây mà gọi là toán lớp 1 à

5 tháng 10 2019

Bài 1

\(a,\frac{3}{5}+\left(-\frac{1}{4}\right)=\frac{7}{20}\)

\(b,\left(-\frac{5}{18}\right)\cdot\left(-\frac{9}{10}\right)=\frac{1}{4}\)

\(c,4\frac{3}{5}:\frac{2}{5}=\frac{23}{5}\cdot\frac{5}{2}=\frac{23}{2}\)

Bài 2

\(a,\frac{12}{x}=\frac{3}{4}\Rightarrow3x=12\cdot4\)

\(\Rightarrow3x=48\)

\(\Rightarrow x=16\)

\(b,x:\left(-\frac{1}{3}\right)^3=\left(-\frac{1}{3}\right)^2\)

\(\Rightarrow x=\left(-\frac{1}{3}\right)^2\cdot\left(-\frac{1}{3}\right)^3=\left(-\frac{1}{3}\right)^5\)

\(\Rightarrow x=-\frac{1}{243}\)

\(c,-\frac{11}{12}\cdot x+0,25=\frac{5}{6}\)

\(\Rightarrow-\frac{11}{12}x=\frac{5}{6}-\frac{1}{4}=\frac{7}{12}\)

\(\Rightarrow x=\frac{7}{12}:\left(-\frac{11}{12}\right)\)

\(\Rightarrow x=-\frac{7}{11}\)

\(d,\left(x-1\right)^5=-32\)

\(\left(x-1\right)^5=-2^5\)

\(x-1=-2\)

\(x=-2+1=-1\)

Bài 3

\(\left|m\right|=-3\Rightarrow m\in\varnothing\)

Bài 3

Gọi 3 cạnh của tam giác lần lượt là a;b;c ( a,b,c>0)

Ta có

\(a+b+c=13,2\)

\(\frac{a}{3};\frac{b}{4};\frac{c}{5}\)

Ap dụng tính chất DTSBN ta có

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{13,2}{12}=\frac{11}{10}\)

\(\hept{\begin{cases}\frac{a}{3}=\frac{11}{10}\\\frac{b}{4}=\frac{11}{10}\\\frac{c}{5}=\frac{11}{10}\end{cases}}\Rightarrow\hept{\begin{cases}a=\frac{33}{10}\\b=\frac{44}{10}=\frac{22}{5}\\c=\frac{55}{10}=\frac{11}{2}\end{cases}}\)

Vậy 3 cạnh của tam giác lần lượt là \(\frac{33}{10};\frac{22}{5};\frac{11}{2}\)

a)\(\frac{3}{5}+\left(-\frac{1}{4}\right)\)

\(=\frac{3}{5}-\frac{1}{4}\)

\(=\frac{12}{20}-\frac{5}{20}=\frac{7}{20}\)

b)\(\left(-\frac{5}{18}\right)\left(-\frac{9}{10}\right)\)

\(=\frac{\left(-5\right)\left(-9\right)}{18.10}\)

\(=\frac{\left(-1\right)\left(-1\right)}{2.2}=\frac{1}{4}\)

c)\(4\frac{3}{5}:\frac{2}{5}\)

\(=\frac{23}{5}:\frac{2}{5}\)

\(=\frac{23}{5}.\frac{5}{2}\)

\(=\frac{23.1}{1.2}=\frac{23}{2}\)

1/

a)\(\frac{12}{x}=\frac{3}{4}\)

\(\Rightarrow x.3=12.4\)

\(\Rightarrow x.3=48\)

\(\Rightarrow x=48:3=16\)

b)\(x:\left(\frac{-1}{3}\right)^3=\left(\frac{-1}{3}\right)^2\)

\(x=\left(\frac{-1}{3}\right)^2.\left(\frac{-1}{3}\right)^3\)

\(x=\frac{\left(-1\right)^2}{3^2}.\frac{\left(-1\right)^3}{3^3}\)

\(x=\frac{1}{9}.\frac{-1}{27}=-\frac{1}{243}\)

Hiệu của 572 và 328 là:

572 - 328 = 244

Hai số chẵn  liên tiếp cách nhau 2 đơn vị.

Vậy từ số 328 đến số 572 có các số chẵn là:

(244 : 2) + 1 = 123 (số)

Đáp số: 123 số chẵn

16 tháng 8 2017

A hi hi

21 tháng 9 2017

có nghĩa là máy của em bị ết xì ke 

em hỉu chưa

21 tháng 9 2017

có thể là tự động cũng nên

8 tháng 3 2018

\(\frac{5}{3}+\frac{4}{3}=\frac{9}{3}=3\)

học tôt 

8 tháng 3 2018

5/3+4/3=9/3=3

3 tháng 8 2020

1+1+1+1+1+2=7

3 tháng 8 2020

đặt \(\sqrt{a^2+\frac{1}{a^2}}+\sqrt{b^2+\frac{1}{b^2}}+\sqrt{c^2+\frac{1}{c^2}}=P\)

phương pháp khảo sát hàm đặc trưng rất hữu hiệu cho những bài bất đẳng thức đối xứng

bài toán cho f(x)+f(y)-f(z) >= A

tìm min, max của S-g(x)+g(y)+g(z)

*nháp

điều kiện x,y,z thuộc D, dự đoán dấu bằng xảy ra khi x=y=z=\(\alpha\). Khảo sát hàm đặc trưng h(t)-g(t)-mf(t) với m=\(\frac{g'\left(\alpha\right)}{f'\left(\alpha\right)}\)sau khi đã tìm được m chỉ cần xét đạo hàm h(t) nữa là xong

ta khảo sát hàm \(f\left(x\right)=\sqrt{x^2+\frac{1}{x^2}}-mx\)

để hàm số có cực tiểu thì f(x)=0 \(\Leftrightarrow\frac{x^4-1}{x^3\sqrt{x^2+\frac{1}{x^2}}}-m=0\)nhận thấy "=" ở x=\(\frac{1}{3}\)nên m=\(\frac{80}{-\sqrt{82}}\)

xét hàm số đại diện f(t)=\(\sqrt{t^2+\frac{1}{t^2}}-\frac{80}{\sqrt{82}}t\)trên (0;1) có f(t)\(\ge f\left(\frac{1}{3}\right)=\frac{162}{3\sqrt{82}}\)

vậy thì \(P\ge-\frac{80}{\sqrt{82}}\left(x+y+z\right)+\frac{162}{\sqrt{82}}=\sqrt{82}\)

bài toán được chứng minh xong

14 tháng 10 2017

= 38 nha

14 tháng 10 2017

số đó là 38

15 tháng 1 2017

1. có

2.sơn tùng

3.ko

4.xanh dương

5.nhân mã

15 tháng 1 2017

cau 1 ban ko so ma vi ban la khi dot                                                                                                                                                   cau 2 do la son tung m tp                                                                                                                                                                   cau 3 ban rat gioi mon ve                                                                                                                                                                   cau 4 ban thich mau do                                                                                                                                                                      cau 5 ban la cung su tu