\(\hept{\begin{cases}y\sqrt{3x-1}+\sqrt{6x-2}=5y-\sqrt{2}\\3x+\frac{2}{y^2}=6\end{cases}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2020

a) \(ĐK:y-2x+1\ge0;4x+y+5\ge0;x+2y-2\ge0,x\le1\)

Th1: \(\hept{\begin{cases}y-2x+1=0\\3-3x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\-1=\sqrt{10}-1\end{cases}}\)(không thỏa mãn)

Th2: \(x,y\ne1\)

\(2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\frac{x+y-2}{\sqrt{y-2x+1}+\sqrt{3-3x}}\)\(\Leftrightarrow\left(x+y-2\right)\left(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1\right)=0\)

Dễ thấy \(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1>0\)nên x + y - 2 = 0

Thay y = 2 - x vào phương trình \(x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\), ta được: \(x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)\(\Leftrightarrow x^2+x-2=\sqrt{3x+7}-1+2-\sqrt{2-x}\)\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\frac{3\left(x+2\right)}{\sqrt{3x+7}+1}+\frac{x+2}{2+\sqrt{2-x}}\)\(\Leftrightarrow\left(x+2\right)\left(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x\right)=0\)

Vì \(x\le1\)nên\(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x>0\)suy ra x = -2 nên y = 4

Vậy nghiệm của hệ phương trình là (x;y) = (-2;4)

17 tháng 10 2020

b) \(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^3=10x-10y\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x^2+y^2\right)=10\left(1\right)\\x^3+2y^3=10\left(x-y\right)\left(2\right)\end{cases}}\)

Thay (1) vào (2), ta được: \(x^3+2y^3=2\left(x^2+y^2\right)\left(x-y\right)\Leftrightarrow\left(2y-x\right)\left(x^2+2y^2\right)=0\)

* Th1: \(x^2+2y^2=0\)(*)

Mà \(x^2\ge0\forall x;2y^2\ge0\forall y\Rightarrow x^2+2y^2\ge0\)nên (*) xảy ra khi x = y = 0 nhưng cặp nghiệm này không thỏa mãn hệ

* Th2: 2y - x = 0 suy ra x = 2y thay vào (1), ta được: \(y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\) 

Vậy hệ có 2 nghiệm \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)

16 tháng 1 2022

Bó tay. com

17 tháng 1 2022
Ko biết sorry
30 tháng 8 2017

20. Giải các hệ phương trình sau bằng phương pháp cộng đại số.

a) {3x+y=32x−y=7{3x+y=32x−y=7;              b) {2x+5y=82x−3y=0{2x+5y=82x−3y=0;         c) {4x+3y=62x+y=4{4x+3y=62x+y=4;

d) {2x+3y=−23x−2y=−3{2x+3y=−23x−2y=−3;                      e) {0,3x+0,5y=31,5x−2y=1,5{0,3x+0,5y=31,5x−2y=1,5

Bài giải:

a) {3x+y=32x−y=7{3x+y=32x−y=7 ⇔⇔ {5x=102x−y=7{5x=102x−y=7⇔⇔ {x=2y=2x−7{x=2y=2x−7⇔⇔ {x=2y=−3{x=2y=−3

  b) {2x+5y=82x−3y=0{2x+5y=82x−3y=0 ⇔⇔ {2x+5y=88y=8{2x+5y=88y=8⇔⇔ {2x+5y=8y=1{2x+5y=8y=1⇔⇔ {x=32y=1{x=32y=1

  c) {4x+3y=62x+y=4{4x+3y=62x+y=4 ⇔⇔ {4x+3y=64x+2y=8{4x+3y=64x+2y=8 ⇔⇔ {4x+3y=6y=−2{4x+3y=6y=−2⇔⇔ {x=3y=−2{x=3y=−2

d) {2x+3y=−23x−2y=−3{2x+3y=−23x−2y=−3 ⇔⇔{6x−9y=−66x−4y=−6{6x−9y=−66x−4y=−6⇔⇔ {6x−9y=−6−5y=0{6x−9y=−6−5y=0⇔⇔ {x=−1y=0{x=−1y=0

   e) {0,3x+0,5y=31,5x−2y=1,5{0,3x+0,5y=31,5x−2y=1,5 ⇔⇔ {1,5x+2,5y=151,5x−2y=1,5{1,5x+2,5y=151,5x−2y=1,5⇔⇔ {1,5x+2,5y=154,5y=13,5{1,5x+2,5y=154,5y=13,5 ⇔⇔ {1,5x=15−2,5.3y=3{1,5x=15−2,5.3y=3 ⇔⇔ {1,5x=7,5y=3{1,5x=7,5y=3

  ⇔⇔



Xem thêm tại: http://loigiaihay.com/bai-20-trang-19-sgk-toan-9-tap-2-c44a5497.html#ixzz4rEN0z2XD

25 tháng 2 2020

1/HPT\(\Leftrightarrow\hept{\begin{cases}x^2+y^2=6-\left(x+y\right)=3\\\left(x+y\right)^2=9\end{cases}}\Rightarrow2xy=\left(x+y\right)^2-\left(x^2+y^2\right)=9-3=6\Rightarrow xy=3\)

Kết hợp đề bài có được: \(\hept{\begin{cases}x+y=3\\xy=3\end{cases}}\). Dùng hệ thức Viet đảo là xong.

1 tháng 3 2018

\(\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\)

\(\Leftrightarrow\left(2x-\sqrt{y}\right)^2\left(x^2+x\sqrt{y}+y\right)=0\)

18 tháng 8 2020

\(\hept{\begin{cases}\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\left(1\right)\\\sqrt{y+\sqrt{y}+x+2}+\sqrt{3x+1}=5\left(2\right)\end{cases}}\)

\(ĐK:y>0;\frac{-1}{3}\le x\ne0;y+\sqrt{y}+x+2\ge0\)

Đặt \(\sqrt{y}=tx\Rightarrow y=t^2x^2\)thay vào (1), ta được: \(\frac{1}{3x}+\frac{2x}{3t^2x^2}=\frac{x+tx}{2x^2+t^2x^2}\)

Rút gọn biến x ta đưa về phương trình ẩn t : \(\left(t-2\right)^2\left(t^2+t+1\right)=0\Leftrightarrow t=2\Leftrightarrow\sqrt{y}=2x\ge0\)

Thay vào (2), ta được: \(\sqrt{4x^2+3x+2}+\sqrt{3x+1}=5\)\(\Leftrightarrow\left(\sqrt{4x^2+3x+2}-3\right)+\left(\sqrt{3x+1}-2\right)=0\)\(\Leftrightarrow\frac{\left(x-1\right)\left(4x+7\right)}{\sqrt{4x^2+3x+2}+3}+\frac{3\left(x-1\right)}{\sqrt{3x+1}+2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}\right)=0\)

Dễ thấy \(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}>0\)nên \(x-1=0\Leftrightarrow x=1\Rightarrow y=4\)

Vậy hệ phương trình có 1 nghiệm duy nhất \(\left(x,y\right)=\left(1,4\right)\)

22 tháng 7 2019

\(ĐKXĐ:x;y\ge2\)

\(\hept{\begin{cases}\sqrt{x-2}-y\sqrt{y}=\sqrt{y-2}-x\sqrt{x}\left(1\right)\\3x^2-y^2-xy-7x+y+5=0\left(2\right)\end{cases}}\)

Giải \(\left(1\right)\Leftrightarrow\sqrt{x-2}-\sqrt{y-2}+x\sqrt{x}-y\sqrt{y}=0\)

                \(\Leftrightarrow\frac{x-2-y+2}{\sqrt{x-2}+\sqrt{y-2}}+\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)=0\)

              \(\Leftrightarrow\frac{x-y}{\sqrt{x-2}+\sqrt{y-2}}+\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)=0\)

            \(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x-2}+\sqrt{y-2}}+x+\sqrt{xy}+y\right)=0\)

Kết hợp ĐKXĐ dễ thấy cái ngoặc to luôn dương

Nên \(\sqrt{x}-\sqrt{y}=0\Rightarrow x=y\)

Thay vào pt (2) đc

\(3x^2-x^2-x^2-7x+x+5=0\)

\(\Leftrightarrow x^2-6x+5=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=1\left(thoa\cdot man\cdot DKXD\right)\\x=5\Rightarrow y=5\left(Thoa\cdot man\cdot DKXD\right)\end{cases}}\)

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)