Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ui.... người ta nói nó dễ ...........
Không ghi lại đề nha !
\(\Leftrightarrow\hept{\begin{cases}\left|x-2\right|+2\left|y-1\right|=9\\\left(x+\left|y-1\right|\right)-2=-1-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left|x-2\right|+2\left|y-1\right|=9\\x-2+\left|y-1\right|=-3\end{cases}}\)
Đặt a là x - 2 ; b là y - 1 , ta được :
\(\hept{\begin{cases}\left|a\right|+2\left|b\right|=9\\a+\left|b\right|=-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left|b\right|=-3-a\\\left|a\right|+2.\left(-3-a\right)=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left|b\right|=-3-a\\\left|a\right|-6-2a=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left|b\right|=-3-a\\\left|a\right|=2a+15\end{cases}}\)
Đkxđ : \(2x+15\ge0\Leftrightarrow a\ge-\frac{15}{2}\)
\(\Leftrightarrow\hept{\begin{cases}\left|b\right|=-3-a\\a=2a+15;a=-\left(2a+15\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left|b\right|=-3-a\\-a=15;3a=-15\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left|b\right|=-3-a\\a=-15\left(loailo\text{ại}\right);a=-5\left(nh\text{ận}\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-5\\\left|b\right|=-3-\left(-5\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-5\\b=-3+5;b=3-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-5\\b=2;b=-2\end{cases}}\)
khi a = -5 thì b = -2 hoặc b = 2
.Vs a = -5 => x - 2 = -5 => x = -3
. Vs b = -2 => y - 1 = -2 => y = -1
.Vs b = 2 => y - 1 = 2 => y = 3
Vậy hệ phương trình có 2 nghiệm là ( -3 ; -1 ) ; ( -3 ; 3 )
Học Tốt!!!!!!!!!
Cách của bạn vo phi hung làm dài quá -,- Tuy nhiên đó cũng là 1 cách , mình có cách khác, bạn tham khảo
\(\hept{\begin{cases}\left|x-2\right|+2\left|y-1\right|=9\\x+\left|y-1\right|=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left|x-2\right|+2\left|y-1\right|=9\\2x+2\left|y-1\right|=-2\end{cases}}\)
Trừ vế theo vế của 2 pt ta đc
\(\left|x-2\right|-2x=11\)(1)
Xét khoảng thôi!
*Nếu x > 2
\(Pt\left(1\right)\Leftrightarrow x-2-2x=11\)
\(\Leftrightarrow x=-13\)(Loại vì ko thỏa mãn khoảng đang xét)
*Nếu x < 2
\(Pt\left(1\right)\Leftrightarrow2-x-2x=11\)
\(\Leftrightarrow-3x=9\)
\(\Leftrightarrow x=-3\)(Thỏa mãn khoảng đang xét)
Thay \(x=-3\)vào pt \(\left(\Delta\right)\)ta đc
\(-3+\left|y-1\right|=-1\)
\(\Leftrightarrow\left|y-1\right|=2\)
\(\Leftrightarrow\orbr{\begin{cases}y-1=2\\y-1=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=3\\y=-1\end{cases}}\)
Vậy pt có nghiệm \(\left(x;y\right)\in\left\{\left(-3;3\right);\left(-3;-1\right)\right\}\)
\(\hept{\begin{cases}|x-2|+2|y-1|=9\\x+|y-1|=-1\end{cases}}\)<=> \(\hept{\begin{cases}\left(x-2\right)+2\left(y-1\right)=9\\x+\left(y-1\right)=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x-2+2y-2=9\\x+y-1=-1\end{cases}}\)<=>\(\hept{\begin{cases}x+2y=13\\x+y=0\end{cases}}\)<=> \(\hept{\begin{cases}x=-13\\y=13\end{cases}}\)
Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!
Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ
\(a,\hept{\begin{cases}5\left(x+2y\right)-3\left(x-y\right)=99\\x-3y=7x-4y-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5x+10y-3x+3y=99\\x-3y-7x+4y=-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+13y=99\\-6x+y=-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6x+39y=198\\-6x+y=-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6x+39y-6x+y=198-17\\-6x+y=-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}40y=181\\-6x+y=-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{181}{40}\\x=\frac{287}{80}\end{cases}}\)
Vậy hpt có nghiệm \(\left(x;y\right)=\left(\frac{287}{80};\frac{181}{40}\right)\)
Ý b, cũng làm tương tự bạn nhé ! Phá ngoặc ra rồi chuyển vế thành hpt bậc nhất 2 ẩn
\(b,\hept{\begin{cases}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2\left(xy+1\right)\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-x+xy-y=x^2+x-xy-y+2xy+2\\y^2+y-xy-x=y^2-2y+xy-2x-2xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=-2\\-3y-x=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{3}\end{cases}}\)
\(\hept{\begin{cases}x-y=3\\\left(x-y\right).\left(x^2+xy+y^2\right)=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=3\\x^2+xy+y^2=3\end{cases}\Leftrightarrow\hept{\begin{cases}y=x-3\\x^2+x.\left(x-3\right)+\left(x-3\right)^2=3\left(I\right)\end{cases}}}\)
Phương trình (I) tương đương: \(x^2+x^2-3x+x^2-6x+9=3\Leftrightarrow3x^2-9x+6=0\Rightarrow x^2-3x+2=0\)
\(\Leftrightarrow\left(x-1\right).\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-2\\y=-1\end{cases}}}\)
Vậy \(\left(x,y\right)=\left(1,-2\right),\left(2,-1\right)\)
\(\hept{\begin{cases}\left|x+y\right|-\left|x-y\right|=9\\3\left|x+y\right|+2\left|x-y\right|=17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3\left|x+y\right|-3\left|x-y\right|=27\\3\left|x+y\right|+2\left|x-y\right|=17\end{cases}}\)
\(\Leftrightarrow5\left|x-y\right|=-10\)???
5|x - y| > 0 k thể bằng -10 đc , đề sai ạ ?
Từ PT trên \(< =>\hept{\begin{cases}2|x+y|-2|x-y|=18\\3|x+y|+2|x-y|=17\end{cases}}\)
\(< =>\hept{\begin{cases}5|x+y|=35\\2|x+y|-2|x-y|=18\end{cases}}\)
\(< =>\hept{\begin{cases}|x+y|=7\\2.7-2|x-y|=18\end{cases}}\)
\(< =>\hept{\begin{cases}|x+y|=7\\|x-y|=-2\end{cases}}\)(vô lý , vì \(|x-y|\ge0\))
Đề sai rồi bn ơi ~!