Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}2x+\left(3-2xy\right)y^2=3\left(1\right)\\2x^2-x^3y=2x^2y^2-7xy+6\left(2\right)\end{cases}}\)
Biến đổi (2), ta được: \(\left(xy-2\right)\left(2xy-3+x^2\right)=0\)
TH1: \(\hept{\begin{cases}xy-2=0\\2x+\left(3-2xy\right)y^2=3\Leftrightarrow\end{cases}\hept{\begin{cases}xy=2\\2x-y^2-3=0\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{y^2+3}{2}\\\frac{\left(y^2+3\right)y}{2}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{y^2+3}{2}\\y^3+3y-4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{y^2+3}{2}\\\left(y-1\right)\left(y^2+y+4\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
TH2: \(\hept{\begin{cases}2xy-3+x^2=0\\2x+\left(3-2xy\right)y^2=3\end{cases}}\Leftrightarrow\hept{\begin{cases}3-2xy=x^2\\2x+x^2y^2=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy=\frac{3-x^2}{2}\\2x+\frac{\left(3-x^2\right)^2}{4}-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}xy=\frac{3-x^2}{2}\\x^4-6x^2+8x-3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy=\frac{3-x^2}{2}\\\left(x-1\right)^3\left(x+3\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}\left(h\right)\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
Vậy \(S=\left\{\left(2;1\right);\left(1;1\right);\left(-3;1\right)\right\}\)
Gọi pt trên là pt (1), pt dưới là pt (2).
\(pt\left(1\right)\Leftrightarrow2x^2+\left(y-6\right)x-2y+4.\)
Ta có: \(\Delta=\left(y-6\right)^2-4\cdot2\left(4-2y\right)=y^2-12y+36-32+16y=y^2+4y+4=\left(y+2\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{6-y+y+2}{4}=2\\x=\frac{6-y-y-2}{4}=\frac{2-y}{2}\end{cases}}\)
Với từng trường hợp thay vào pt (2) sẽ ra, tự lm nhé
\(\hept{\begin{cases}x^3+y^3=9\\x^2+2y^2=x+4y\end{cases}\Leftrightarrow}\hept{\begin{cases}x^3+y^3=9\\3x^2+6y^2=3x+12y\end{cases}}\)
Trừ 2 vế của pt cho nhau ta được
\(x^3-3x^2+y^3-6x^2=9-3x-12y\)
\(\Leftrightarrow\left(x-1\right)^3=\left(2-y\right)^3\)
\(\Leftrightarrow x-1=2-y\)
\(\Leftrightarrow x=3-y\)
Thế vào một trong 2 pt ban đầu sẽ tìm đc x ; y
\(\hept{\begin{cases}3x^3+5y^3-2xy=6\\2x^3+3y^3+3xy=8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y^3=13xy-12\\x^3=22-21xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^3y^3+\left(13xy-12\right)\left(21xy-22\right)=0\\x^3=22-21xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^3=22-21xy\\x^3y^3+273x^2y^2-538xy+264=0\left(1\right)\end{cases}}\)
Giải (1) : \(x^3y^3+273x^2y^2-538xy+264=0\)
Pt này có 1 nghiệm là 1 , 2 nghiệm còn lại xấu quá :( \(-137\pm\sqrt{19033}\) nên mk ko làm nx , đại khái hướng làm là như vậy
Tìm đc xy rồi thay vào x3 = 22 - 21xy sẽ tìm đc x -> y
\(a)\)\(\hept{\begin{cases}2x+3y=5\\x-4y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{5-3y}{2}\\x=1+4y\end{cases}\Leftrightarrow}5-3y=2+8y\Leftrightarrow y=\frac{3}{11}}\)
\(\Rightarrow\)\(x=1+4y=1+4.\frac{3}{11}=\frac{23}{11}\)
\(b)\)\(\hept{\begin{cases}x+y=-2\\-2x-3y=9\end{cases}\Leftrightarrow\hept{\begin{cases}-x=y+2\\-x=\frac{9+3y}{2}\end{cases}\Leftrightarrow}2y+4=9+3y\Leftrightarrow y=-5}\)
\(\Rightarrow\)\(x=-y-2=-\left(-5\right)-2=3\)
...