\(\hept{\begin{cases}x-\left(m+3\right)y=0\\\left(m-2\right)x+4y=m-1\end{cases}}\)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2018

a)   Với m = 0 thì ta có hệ:

\(\hept{\begin{cases}x-y=1\\x-y=2\end{cases}}\)

Ta thấy ngay phương trình vô nghiệm.

b) \(\hept{\begin{cases}\left(m+1\right)x-y=m+1\\x+\left(m-1\right)y=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x-y=m+1\\\left(m+1\right)x+\left(m^2-1\right)y=2\left(m+1\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x-y=m+1\\m^2y=m+1\end{cases}}\)

Với m = 0 : phương trình vô nghiệm.

Với \(m\ne0\), ta có : \(\hept{\begin{cases}\left(m+1\right)x-\frac{m+1}{m^2}=m+1\\y=\frac{m+1}{m^2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{m^2+1}{m^2}\\y=\frac{m+1}{m^2}\end{cases}}\)

Vậy thì \(S=x+y=\frac{m^2+m+2}{m^2}=1+\frac{1}{m}+\frac{2}{m^2}\)

Đặt \(\frac{1}{m}=t\Rightarrow S=2t^2+t+1=2\left(t^2+\frac{1}{2}t+\frac{1}{16}\right)+\frac{7}{8}\)

\(=2\left(t+\frac{1}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)

Vây minS = \(\frac{7}{8}\) khi m = -4.

19 tháng 1 2019

Bài 1 : dùng ĐK chặn x;y

Bài 2: pt trùng phương đặt x8 = y rồi dùng Vi-ét cho pt 1 rồi Vi-ét cho pt 2

Bài 3: rút x;y theo m rồi quy P về pt chỉ có ẩn m -> tổng bình phương cộng vs 1 hằng số

Bài 4: Đi ngủ .VV

19 tháng 1 2019

Cách chặn x ; y của a khó quá :( nghĩ mãi ko ra , đành làm cách khác

\(1,ĐKXĐ:x\ge-y\)

Từ hệ \(\Rightarrow\hept{\begin{cases}\sqrt{x^2+x+2}=y+\sqrt{x+y}\\x+1=y+\sqrt{x+y}\end{cases}}\)

        \(\Rightarrow\sqrt{x^2+x+2}=x+1\)

        \(\Leftrightarrow\hept{\begin{cases}x\ge-1\\x^2+x+2=x^2+2x+1\end{cases}}\)

       \(\Leftrightarrow x=1\)

Thế vào hệ có \(\sqrt{y+1}=2-y\)

          \(\Leftrightarrow\hept{\begin{cases}-1\le y\le2\\y+1=y^2-4y+4\end{cases}}\)

         \(\Leftrightarrow\hept{\begin{cases}-1\le y\le2\\y^2-5y+3=0\end{cases}}\)

         \(\Leftrightarrow y=\frac{5-\sqrt{13}}{2}\)

Vậy hệ có nghiệm \(\hept{\begin{cases}x=1\\y=\frac{5-\sqrt{13}}{2}\end{cases}}\)

5 tháng 2 2018

4.

(1) => y=2m-mx thay vào (2) ta được x+m(2m-mx)=m+1

<=> x-m2x=-2m2+m+1

<=> x(1-m)(1+m)=-(m-1)(1+2m)

với m=-1 thì pt vô nghiệm

với m=1 thì pt vô số nghiệm => có nghiệm nguyên => chọn

với m\(\ne\pm\) 1 thì x=\(\frac{-2m-1}{m+1}\)=\(-2+\frac{1}{m+1}\)

=> y=2m-mx=xm-m(-2+\(\frac{1}{m+1}\)) =2m+2m-\(\frac{m}{m+1}\)=4m-1+\(\frac{1}{m+1}\)

để x y nguyên thì \(\frac{1}{m+1}\)nguyên ( do m nguyên)

=> m+1\(\in\)Ư(1)={1;-1}

=> m\(\in\){0;-2} mà m nguyên âm nên m=-2 

vậy m=-2 thì ...
P/s hình như 1 2 3 sai đề

8 tháng 2 2018

Phương trình Câu 3 là \(x^4-2x^2+m-1\) ạ hihi

2 tháng 3 2020

\(\hept{\begin{cases}\left(m-1\right)x-y=2\\mx+y=m\end{cases}}\) ( \(m\ne0;m\ne1\))

\(\Leftrightarrow\hept{\begin{cases}mx-x-y=2\\mx=m-y\end{cases}\Leftrightarrow\hept{\begin{cases}m-2y-x=2\\y=m-mx\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=m-m\left(m-2y-2\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=3m-m^2+2my\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=\frac{3m-m^2}{1-2m}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-m-2}{1-2m}\\y=\frac{3m-m^2}{1-2m}\end{cases}}\)

Theo bài ra ta có : 2x + y < 0 \(\Leftrightarrow\frac{2\left(-m-2\right)}{1-2m}+\frac{3m-m^2}{1-2m}< 0\)

\(\Leftrightarrow\frac{-m^2+m-4}{1-2m}< 0\Leftrightarrow\frac{-\left(m-\frac{1}{2}\right)^2-\frac{15}{4}}{1-2m}< 0\)

Ta có : \(-\left(m-\frac{1}{2}\right)^2-\frac{15}{4}< 0\)\(\Rightarrow1-2m< 0\Rightarrow m>\frac{1}{2}\)

Vậy \(m>\frac{1}{2}\left(m\ne1\right)\)