Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Nhờ sự trợ giúp đắc lực từ máy tính casio ta tìm được ngay kết quả
\(\left(2x+3\right)^2+\left(2x+5\right)^2-2\left(2x+3\right)\left(2x+5\right)=4\forall x\).Đã có kết quả,nhưng bài làm vẫn là thứ không thể thiếu:
Ta có: \(\left(2x+3\right)^2+\left(2x+5\right)^2-2\left(2x+3\right)\left(2x+5\right)\)
\(=4x^2+6x+9+4x^2+10x+25-\left(4x+6\right)\left(2x+5\right)\)
\(=4x^2+6x+9+4x^2+10x+25-2x\left(4x+6\right)+5\left(4x+6\right)\)
\(=4x^2+6x+9+4x^2+10x+25-8x^2+12x+20x+30=4\) (tới bước này mình tính ngoài giấy nháp rồi ra kết quả luôn nhé)
![](https://rs.olm.vn/images/avt/0.png?1311)
Q = x^4(x^2+x) + x^3(x^2+x) + x^2(x^2+x) + x(x^2+x) + x^2 + x + x +1
= x^4 + x^3 + x^2 + 2x + 2
= x^2(x^2+x) + x + 3
= x^2 + x + 3 = 4
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: 5x2 + 5y2 + 8xy - 2x + 2y + 2 = 0
\(\Leftrightarrow\)(4x2 + 8xy + 4y2) + (x2 - 2x + 1) + (y2 + 2y + 1) = 0
\(\Leftrightarrow\)(2x + 2y)2 + (x - 1)2 + (y + 1)2 = 0
\(\Leftrightarrow\)\(\hept{\begin{cases}2x+2y=0\\x-1=0\\y+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x+y=0\\x=1\\y=-1\end{cases}}\)
Thay x = 1; y = -1; x + y = 0 vào M ta được:
M = 0 + (1 + 2)2008 + ( - 1 + 1)2009
= 0 + 32008 + 0 = 32008
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(\frac{x}{x^2+x+1}=-\frac{1}{4}\Rightarrow x^2+x+1=-4x\)
\(\Rightarrow x^2+5x+1=0\Rightarrow x^2=5x+1\)
Với x2=5x+1 ta được:
\(P=\frac{2x\left(5x+1\right)^2+10\left(5x+1\right)^2+2x\left(5x+1\right)-7\left(5x+1\right)-35x+2009}{2029+60x+11\left(5x+1\right)-5x\left(5x+1\right)-\left(5x+1\right)^2}\)
\(P=\frac{2x\left(25x^2+10x+1\right)+10\left(25x^2+10x+1\right)+10x^2+2x-35x-7-35x+2009}{2029+60x+55x+11-25x^2-5x-\left(25x^2+10x+1\right)}\)
\(P=\frac{50x^3+20x^2+2x+250x^2+100x+10+10x^2+2x-35x-7-35x+2009}{2029+60x+55x+11-25x^2-5x-25x^2-10x-1}\)
\(P=\frac{50x^3+280x^2+34x+2012}{2039+100x-50x^2}\)
\(P=\frac{50x\left(5x+1\right)+280\left(5x+1\right)+34x+2012}{2039+100x-50\left(5x+1\right)}\)
\(P=\frac{250x^2+50x+1400x+280+34x+2012}{2039+100x-250x-50}\)
\(P=\frac{250\left(5x+1\right)+50x+1400x+280+34x+2012}{1989-150x}\)
\(P=\frac{1250x+250+50x+1400x+280+34x+2012}{1989-150x}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
\(Q=x^4+2x^2+2\left(x^2+1\right)\left(x^2+6x-1\right)+\left(x^2+6x-1\right)^2\)
\(Q=\left[\left(x^2+6x-1\right)^2+2\left(x^2+6x-1\right)\left(x^2+1\right)+\left(x^4+2x^2+1\right)\right]-1\)
\(Q=\left[\left(x^2+6x-1\right)^2+2\left(x^2-6x+1\right)\left(x^2+1\right)+\left(x^2+1\right)^2\right]-1\)
\(Q=\left(x^2+6x-1+x^2+1\right)^2-1\)
\(Q=\left(2x^2+6x\right)^2-1\)
\(Q=99^2-1\)
\(Q=9800\)
Bài 2:
Đặt \(A=\left(2+1\right)\left(2^2+1\right)...\left(x^{64}+1\right)+1\)
\(\left(2-1\right)\cdot A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{64}+1\right)+1\)
\(1\cdot A=\left(2^2-1\right)\left(2^2+1\right)...\left(2^{64}+1\right)+1\)
\(A=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(A=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)
\(A=2^{128}-1^2+1\)
\(A=2^{128}\left(đpcm\right)\)
Bài 3:
Để C là số nguyên thì x2 - 3 ⋮ x - 2
<=> x (x - 2) + 2x - 3 ⋮ x - 2
mà x (x - 2) ⋮ x - 2
=> 2x - 3 ⋮ x - 2
<=> 2 (x - 2) + 3 ⋮ x - 2
mà 2 (x - 2) ⋮ x - 2
=> 3 ⋮ x - 2
=> x - 2 thuộc Ư(3) = { 1; 3; -1; -3 }
Ta có bảng :
x-2 | 1 | 3 | -1 | -3 |
x | 3 | 5 | 1 | -1 |
Vậy x thuộc { -1; 1; 3; 5 }
Q=(x6+x5)+(x5+x4)+(x4+x3)+(x3+x2)+(x2+x)+(x+1)
=x4(x2+x)+x3(x2+x)+x2(x2+x)+x(x2+x)+(x2+x)+x+(x2+x)
=x4+x3+x2+x+2+x
=x2(x2+1)+(x2+x)+2+x
=x2+x+2+1
=(x2+1)+3
=4
Kết quả Q=3