Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N D E
Xét\(\Delta\)ABC có: NE //BC; BD //BC
=> \(\frac{AN}{AB}=\frac{NE}{BC}\) và \(\frac{AM}{AB}=\frac{MD}{BC}\)
=> \(\frac{MD}{BC}+\frac{NE}{BC}=\frac{AM}{AB}+\frac{AN}{AB}\)
=> \(\frac{MD+NE}{BC}=\frac{AM+AN}{AB}=\frac{NB+AN}{AB}=\frac{AB}{AB}=1\)
=> MD + NE = BC
A B C I E D
a) Xét △IAB và △IAD có:
AB = AD (gt)
IAB = IAD (AI: phân giác BAD)
AI: chung
=> △IAB = △IAD (c.g.c)
=> IB = ID (2 cạnh tương ứng)
b) Ta có:
ABI + IBE = 180o (kề bù)
ADI + IDC = 180o (kề bù)
Mà ABI = ADI (△ABI = △ADI)
=> IBE = IDC
Xét △BEI và △DCI có:
IBE = IDC (cmt)
IB = ID (cm câu a)
BIE = DIC (đối đỉnh)
=> △BEI = △DCI (g.c.g)
c) Vì AB = AD (cmt)
=> △ABD cân tại A
=> ABD = \(\frac{180^o-\widehat{BAD}}{2}\) (1)
Ta có:
AE = AB + BE
AC = AD + DC
Mà AB = AD (gt), BE = DC (△BIE = △DIC)
=> AE = AC => △AEC cân tại A
=> AEC = \(\frac{180^o-\widehat{BAD}}{2}\) (2)
Từ (1) và (2) => ABD = AEC
Mà hai góc ở vị trí so le trong => BD // EC
d) Ta có: ABC = 2ACB
Lại có: ABC = BIE + BEI (tính chất góc ngoài)
=> 2ACB = BIE + BEI
=> BIE = DCI
Lại có: DIC = BIE (đối đỉnh) => DIC = DCI => △DIC cân
=> DI = DC
Mà DI = BI => DC = BI
Có: AC = AD + DC
=> AC = AB + IB (đpcm)
Đề sai phải ko bạn? Chứ sao mà AB>AC mà lấy điểm E trên cạnh sao cho AE=AB được bạn?
a/ tgiác ACD và tgiác AME là hai tgiác vuông tại A.
AD = AE (gt)
góc(ADC) = góc (AEM) (góc có cạnh tương ứng vuông góc)
=> tgiácACD = tgiácAME (g.c.g)
b/ ta có: AG//EH (cùng vuông góc với CD)
=> AG // IH
mà gt => AI // GH
vậy AGHI là hình bình hành
=>AG = IH.
mặt khác theo cm trên ta có: tgiác ACD = tgiác AME
=> AM = AC = AB
=> A là trung điểm BM, mà AI // BC
=> AI là đường trung bình của tgiác MBH
=> I là trung điểm của MH.
vậy: IM = IH = AG
có: AM = AB
góc BAG = góc AMI (so le trong)
=> tgiác AGB = tgiác MIA ( c.g.c)
c/ có AG//MH, A là trung điểm BM
=> AG là đường trung bình của tgiácBMH
=> G là trung điểm BH
hay BG = GH.