Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(n^5-5n^3+4n=n\left(n^4-5n^2+4\right)\)
\(=n\left(n^4-n^2-4n^2+4\right)\)
\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\)
\(=n\left(n^2-1\right)\left(n^2-4\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)
\(\Rightarrow\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Vì \(n-2;n-1;;n;n+1;n+2\) là tích của 5 số nguyên liên tiếp chia hết cho 3;5;8
Mà ƯC\(_{\left(3;5;8\right)}\)=1
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) chia hết cho:
3.5.8=120(đpcm)
program tinhtoan;
uses crt;
var: i;n:interger;
S:real;
writeln(' Nhap n='); readln(n);
S:=0;
For i:=1 to n*(n*1) do S:=S+\(\frac{1}{i};\)
writeln(' S=',S);
End.
(ps: ko chắc )
Cái gì có khối lượng thì sẽ tạo ra một áp suất đè nên những vật ở dưới nó
Đầu tiên bạn lấy a+b+c=x^2+y^2+z^2-xy-yz-zx
Chúng ta sẽ chứng minh đảo ta thế a+b+c vào vế phải ta được
Vế phải=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)=x^3+y^3+z^3-3xyz
Vế trái=ax+by+cz=(x^2-yz)x+(y^2-zx)y+(z^2-xy)z=x^3+y^3+z^3-3xyz
Vậy là xong VT=VP thế thì
ax+by+cz=(x+y+z)(a+b+c) cảm ơn bạn đã cho mình một bài toán hay Thank you hahahaha
n chẵn => n = 2k (k ∈N)
n3 + 6n2 + 8n = (2k)3 + 6.(2k)2 + 8.(2k) = 8k3 + 24.k2 + 16k = 8k. (k2 + 3k + 2) = 8k.(k2 + 2k + k + 2)
= 8k. [k(k +2) + (k+2)] = 8k.(k+1).(k+2)
Nhận xét: k; k+1; k+ 2 là 3 số tự nhiên liên tiếp nên tích của chúng chia hết cho 6
=> 8k.(k+1).(k+2) chia hết cho 8.6 = 48
=> n3 + 6n2 + 8n chia hết cho 48
\(A=n^3+6n^2+8n\\ =n\left(n^2+6n+8\right)\\ =n\left(n+2\right)\left(n+4\right)\)
n chẵn => n + 2; n + 4 chẵn => A là tích của 3 số chẵn liên tiếp => A chia hết cho 48 (đpcm)
a) \(x^2-2xy+2y^2+2y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)
\(=\left(x-y\right)^2+\left(y+1\right)^2\)
b) \(4x^2-12x-y^2+2y+8\) (đã sửa đề)
\(=4\left(x^2-3x+\frac{9}{4}\right)-\left(y^2-2y+1\right)\)
\(=\left[2\left(x-\frac{3}{2}\right)\right]^2-\left(y-1\right)^2\)
c) \(z^2-6z+5-t^2-4t\)
\(=\left(z^2-6z+9\right)-\left(t^2+4t+4\right)\)
\(=\left(z-3\right)^2-\left(t+2\right)^2\)