Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
a) trục hoành cắt đoạn đồ thị y = tanx (ứng với x ∈ ) tại ba điểm có hoành độ - π ; 0 ; π. Do đó trên đoạn chỉ có ba giá trị của x để hàm số y = tanx nhận giá trị bằng 0, đó là x = - π; x = 0 ; x = π.
b) Đường thẳng y = 1 cắt đoạn đồ thị y = tanx (ứng với x ∈ ) tại ba điểm có hoành độ . Do đó trên đoạn chỉ có ba giá trị của x để hàm số y = tanx nhận giá trị bằng 1, đó là .
c) Phần phía trên trục hoành của đoạn đồ thị y = tanx (ứng với x ∈ ) gồm các điểm của đồ thị có hoành độ truộc một trong các khoảng . Vậy trên đoạn , các giá trị của x để hàm số y = tanx nhận giá trị dương là x ∈ .
d) Phần phía dưới trục hoành của đoạn đồ thị y = tanx (ứng với x ∈ ) gồm các điểm của đồ thị có hoành độ thuộc một trong các khoảng . Vậy trên đoạn , các giá trị của x để hàm số y = tanx nhận giá trị dương là x ∈ .
a) Ta có g(x) = = (x2 + 2x + 4) = 22 +2.2 +4 = 12.
Vì g(x) ≠ g(2) nên hàm số y = g(x) gián đoạn tại x0 = 2.
b) Để hàm số y = f(x) liên tục tại x0 = 2 thì ta cần thay số 5 bởi số 12.
\(y=-\frac{1}{3}mx^3+\left(m-1\right)x^2-mx+3\)
\(y'=-mx^2+2\left(m-1\right)x-m\)
Với \(m=0\): \(y'=-2x\)không thỏa mãn.
Với \(m\ne0\):
\(y'\le0,\forall x\inℝ\)khi:
\(\hept{\begin{cases}-m< 0\\\Delta'=\left(m-1\right)^2-m^2\le0\end{cases}}\Leftrightarrow m\ge\frac{1}{2}\).
\(y'=0\)có hai nghiệm phân biệt cùng âm khi:
\(\hept{\begin{cases}\Delta'=-2m+1>0\\\frac{2\left(m-1\right)}{m}< 0\\\frac{-m}{-m}>0\end{cases}}\Leftrightarrow0< m< \frac{1}{2}\).
\(y'=0\)có hai nghiệm phân biệt khi \(-2m+1>0\Leftrightarrow m< \frac{1}{2}\).
\(\hept{\begin{cases}x_1+x_2=\frac{2\left(m-1\right)}{m}\\x_1x_2=1\end{cases}}\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\frac{4\left(m-1\right)^2}{m^2}-2=3\)
\(\Leftrightarrow m=2\left(-2\pm\sqrt{5}\right)\)
Đối chiếu điều kiện đều thỏa mãn.