
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(a,\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|=4x\)
\(\left|x+3,4\right|\ge0;\left|x+2,4\right|\ge0;\left|x+7,2\right|\ge0\)
\(< =>\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|>0\)
\(< =>4x>0\)
\(x>0\)
\(\hept{\begin{cases}\left|x+3,4\right|=x+3,4\\\left|x+2,4\right|=x+2,4\\\left|x+7,2\right|=x+7,2\end{cases}}\)
\(x+3,4+x+2,4+x+7,2=4x\)
\(x=13\left(TM\right)\)
\(b,3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(3^n.27+3^n.3+2^n.8+2^n.4\)
\(3^n.30+2^n.12\)
\(\hept{\begin{cases}3^n.30⋮6\\2^n.12⋮6\end{cases}}\)
\(< =>3^n.30+2^n.12⋮6< =>VP⋮6\)

x^2 - x - y^2 - y
= x^2 - y^2 - x - y
= ( x - y ) ( x + y ) - ( x + y )
= ( x + y ) ( x - y - 1 )
x^2 - 2xy + y^2 - z^2
= ( x- y ) ^2 - z^2
= ( x - y - z ) ( x - y + z )

\(2x+3y+5z=\frac{x^2+y^2+z^2}{2}+19\)
\(x^2+y^2+z^2+38=4x+6y+10z\)
\(\left(x^2-4x+4\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)
\(\left(x-2\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
\(x-2=y-3=z-5=0\)
\(x=2,y=3,z=5\)



18, \(\frac{x}{2}+\frac{x^2}{8}=0\Leftrightarrow4x+x^2=0\Leftrightarrow x\left(x+4\right)=0\Leftrightarrow x=-4;x=0\)
19, \(4-x=2\left(x-4\right)^2\Leftrightarrow\left(4-x\right)-2\left(4-x\right)^2=0\)
\(\Leftrightarrow\left(4-x\right)\left[1-2\left(4-x\right)\right]=0\Leftrightarrow\left(4-x\right)\left(-7+2x\right)=0\Leftrightarrow x=4;x=\frac{7}{2}\)
20, \(\left(x^2+1\right)\left(x-2\right)+2x-4=0\Leftrightarrow\left(x^2+1\right)\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3>0\right)=0\Leftrightarrow x=2\)
21, \(x^4-16x^2=0\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\Leftrightarrow x=0;x=\pm4\)
22, \(\left(x-5\right)^3-x+5=0\Leftrightarrow\left(x-5\right)^3-\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[\left(x-5\right)^2-1\right]=0\Leftrightarrow\left(x-5\right)\left(x-6\right)\left(x-4\right)=0\Leftrightarrow x=4;x=5;x=6\)
23, \(5\left(x-2\right)-x^2+4=0\Leftrightarrow5\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5-x-2\right)=0\Leftrightarrow x=2;x=3\)
Bài 1 :
a, ĐK : \(x\ne\pm2\)
b, \(A=\frac{x+1}{x-2}+\frac{x-1}{x+2}+\frac{x^2+3}{4-x^2}\)
\(=\frac{\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)-x^2-3}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+3x+2+x^2-3x+2-x^2-3}{\left(x-2\right)\left(x+2\right)}=\frac{x^2+1}{\left(x-2\right)\left(x+2\right)}\)
c, Vì x = -2 ktm đkxđ (loại)
Thay x = 3 ta được : \(\frac{9+1}{1.5}=\frac{10}{5}=2\)
d, \(A=-\frac{1}{3}\Rightarrow\frac{x^2+1}{\left(x-2\right)\left(x+2\right)}=-\frac{1}{3}\)
\(\Rightarrow3x^2+3=-\left(x^2-4\right)=4-x^2\Leftrightarrow4x^2-1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=0\Leftrightarrow x=\pm\frac{1}{2}\)( tmđk )
e, Để A ko âm khi \(\frac{x^2+1}{\left(x-2\right)\left(x+2\right)}>0\Rightarrow\left(x-2\right)\left(x+2\right)>0\)
TH1 : \(\hept{\begin{cases}x-2>0\\x+2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x>-2\end{cases}}\Leftrightarrow x>2}\)
TH2 : \(\hept{\begin{cases}x-2< 0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 2\\x< -2\end{cases}\Leftrightarrow x< -2}\)
Vậy x > 2 ; x < -2 thì A ko âm