\(4.\left(5+5^1+5^2+5^3+....+5^{100}\right)+5=5^n\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1/a) 12 - x= 1-(-5)

      12 - x = 6

             x= 12-6

             x=6

 b)| x+4|= 12

x+4 = \(\pm\)12

*x+4=12

     x=8

*x+4= -12

    x=-16

2/Tìm n

\(n-5⋮n+2\)

=> \(n+2-7⋮n+2\)

mà \(n+2⋮n+2\)

=> 7\(⋮\)n+2

=> n+2 \(\varepsilon\)Ư(7)= {1;-1;7;-7}

n+21-17-7
n-1-35-9

3/a)4.(-5)2 + 2.(-12)

= 2.2.(-5)2 + 2.(-12)

=2[2.25.(-12)]

=2.(-600)

=-1200

2 tháng 5 2019

x/3 = -12/9

=> x/3 = -4/3

=> x = -4

vậy_

2 tháng 5 2019

1.Ta có: \(\frac{x}{3}=-\frac{12}{9}\)

=> \(\frac{3x}{9}=-\frac{12}{9}\)

=> 3x = -12

=> x = -12 : 3

=> x = -4

\(\frac{4}{5}x-\frac{8}{5}=-\frac{1}{2}\)

=> \(\frac{4}{5}x=-\frac{1}{2}+\frac{8}{5}\)

=> \(\frac{4}{5}x=\frac{11}{10}\)

=> \(x=\frac{11}{10}:\frac{4}{5}\)

=> \(x=\frac{11}{8}\)

10 tháng 2 2019

Ta có: (n + 5)2 - 3(n + 5) + 2 \(\in\)B(n + 5)

<=> (n + 5)(n + 5 - 3) + 2 \(⋮\)n + 5

<=> 2 \(⋮\)n + 5

<=> n + 5 \(\in\)Ư(2) = {1; -1; 2; -2}

Lập bảng : 

n + 5 1 -1 2 -2
  n -4 -6 -3 -7

Vậy ...

a: \(\Leftrightarrow x^2=\dfrac{-5}{2}\cdot\dfrac{-10}{9}=\dfrac{50}{18}=\dfrac{25}{9}\)

=>x=5/3hoặc x=-5/3

c: \(\Leftrightarrow4\left(x-\dfrac{5}{8}\right)=\dfrac{1}{4}+\dfrac{3}{4}=1\)

=>x-5/8=1/4

hay x=2/8+5/8=7/8

d: \(\Leftrightarrow\left|x-3\right|=\dfrac{2}{5}+\dfrac{3}{5}=1\)

=>x-3=1 hoặc x-3=-1

=>x=4 hoặc x=2

e: =>1-1/2x=-3

=>1/2x=4

hay x=8

5 tháng 12 2018

B=-4/5+4/52-4/53+...+4/5200

5B=-4+4/5-4/52+...+4/5201

5B+B=-4+4/5200

6B=-4x5200/5200+4/5200

6B=-4+4x5200/5200

Còn lại bạn tính nốt nha

7 tháng 12 2018

thank you

3 tháng 4 2020

Ta có : \(A=\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\)

=> \(5A=\frac{1}{5}+\frac{2}{5^2}+...+\frac{n}{5^n}+...+\frac{11}{5^{11}}\)

Lấy 5A trừ A theo vế ta có :

5A - A = \(\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{n}{5^n}+...+\frac{11}{5^{11}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\right)\)

4A = \(\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\right)-\frac{11}{5^{12}}\)

Đặt B = \(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\)

=> 5B = \(1+\frac{1}{5}+...+\frac{1}{5^{10}}\)

Lấy 5B trừ B ta có : 

=> 5B - B = \(\left(1+\frac{1}{5}+...+\frac{1}{5^{10}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\right)\)

=> 4B =\(1-\frac{1}{5^{11}}\)

=> B = \(\frac{1}{4}-\frac{1}{5^{11}.4}\)

Khi đó 4A = \(\frac{1}{4}-\frac{1}{5^{11}.4}-\frac{1}{5^{12}}\)

=> A = \(\frac{1}{16}-\left(\frac{1}{5^{11}.16}+\frac{1}{5^{12}.4}\right)< \frac{1}{16}\left(\text{ĐPCM}\right)\)

cậu ơi , mình quên không ghi 1 dữ liệu ạ 

n thuộc N 

V ậy có cần phải chỉnh sửa ở trong bài làm không ạ?????