Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left|x-\frac{2}{3}\right|-4\)
Có: \(\left|x-\frac{2}{3}\right|\ge0\)
\(\Rightarrow\left|x-\frac{2}{3}\right|-4\ge-4\)
Dấu '=' xảy ra khi: \(\left|x-\frac{2}{3}\right|=0\Rightarrow x=\frac{2}{3}\)
Vậy: \(Min_A=-4\) tại \(x=\frac{2}{3}\) ( K có GTLN bạn nhé )
b) \(B=2-\left|x+\frac{5}{6}\right|\) . Có: \(\left|x+\frac{5}{6}\right|\ge0\)
\(\Rightarrow2-\left|x+\frac{5}{6}\right|\le2\)
Dấu '=' xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)
Vậy: \(Max_B=2\) tại \(x=-\frac{5}{6}\)
\(C=-\left|x+\frac{2}{3}\right|-4\). Có: \(-\left|x+\frac{2}{3}\right|\le0\)
\(\Rightarrow-\left|x+\frac{2}{3}\right|-4\le-4\)
Dấu '=' xảy ra khi: \(-\left|x+\frac{2}{3}\right|=0\Rightarrow x=-\frac{2}{3}\)
Vậy: \(Max_C=-4\) tại \(x=-\frac{2}{3}\)
Bạn xét 2 trường hợp
+) x > 15/2 => 2/5x - 3 >0 => |2/5x-3| = 2/5x - 3
dựa vào x > 15/3 bạn tìm GTNN của A (1)
+) x <= 15/3 => 2/5x - 3 <=0 => |2/5x-3| = 3-2/5x
=> A = -1 (2)
Từ (1) và (2) bạn chọn ra GTNN của A
Cách làm là vậy bạn tự giải nhé !!!!
~~~ chúc bạn học tốt !!!!!
Nhớ k cho mk nha :))))))))))
Để M bé nhất => \(|x-5|\)bé nhất.
\(\Rightarrow|x-5|=0\Rightarrow x-5=0\Rightarrow x=5\)
Thay x vào M, ta có:
\(M=|x-2|+|x-3|+|x-4|+|x-5|\)
\(\Rightarrow M=|5-2|+|5-3|+|5-4|+|5-5|\)
\(\Rightarrow M=3+2+1+0=6\)
Vậy M có giá trị nhỏ nhất = 6 khi x = 5.
\(\left|x-2\right|+\left|x-5\right|=\left|-x+2\right|+\left|x-5\right|\ge\left|-x+2+x-5\right|=3\)(1)
\(\left|x-3\right|+\left|x-4\right|=\left|-x+3\right|+\left|x-4\right|\ge\left|-x+3+x-4\right|=1\)(2)
\(M\ge3+1=4\)
Dấu = xảy ra khi \(\hept{\begin{cases}\left(-x+2\right).\left(x-5\right)\ge0\\\left(-x+3\right).\left(x-4\right)\ge0\end{cases}\Leftrightarrow3\le x\le4}\)
Vậy...