Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D H
a,Xét 2 tam giác vuông AHC và DHC có :
HC là cạnh chung
AH = HD ( gt )
=> tam giác AHC = tam giác DHC ( cv-cv )
=> CA = CD ( 2 cạnh tương ứng )
b,Xét tam giác ABC và tam giác DBC có :
CA = CD ( cmt )
Góc ACB = góc BCD ( do tam giác AHC = tam giác DHC )
BC là cạnh chung
=> tam giác ABC = tam giác DBC ( c-g-c )
c, ÁP dụng định lí Pi-ta-go cho tam giác AHB vuông tại H
\(AB^2=AH^2+HB^2\)
tam giác AHC vuông tại H
\(AC^2=AH^2+HC^2\)
=> \(AB^2+AC^2=2.AH^2+HB^2+HC^2\)
Ta có : \(AB^2=BD^2,AC^2=DC^2\)
=> \(BD^2+DC^2=2.AH^2+HB^2+HC^2\)
=> \(AB^2+AC^2+DB^2+DC^2=2.AH^2+HB^2+HC^2\)
=> \(AH^2+HB^2+HC^2=\dfrac{1}{2}\left(AB^2+AC^2+BD^2+DC^2\right)\)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Bài 1:
Giải:
Ta có: \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)
Trong t/g ABC vuông tại A, áp dụng định lí Py-ta-go ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AB^2+AC^2=15^2=225\)
Đặt \(\frac{AB}{3}=\frac{AC}{4}=k\left(k>0\right)\Rightarrow\left\{\begin{matrix}AB=3k\\AC=4k\end{matrix}\right.\)
Mà \(AB^2+AC^2=225\)
\(\Rightarrow9k^2+16k^2=225\)
\(\Rightarrow25k^2=225\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=3\)
\(\Rightarrow\left[\begin{matrix}AB=3.3=9\\AC=3.4=12\end{matrix}\right.\)
Vậy AB = 9 cm; AC = 12 cm
2/ áp dụng định lí Py - ta - go vào tam tam giác vuông AHB ta có:
AH2 + BH2 = AB2
=> BH.HC + BH2 = AB2
=> BH( HC + BH ) = AB2
=> BH.BC = AB2 (1)
áp dụng định lí Py - ta - go vào tam giác vuông AHC ta có:
AH2 + HC2 = AC2
=> BH.HC + HC2 = AC2
=> HC( BH + HC ) = AC2
=> HC.BC = AC2 (2)
Từ 1 và 2 ta có:
=> BH.BC + HC.BC = AB2 + AC2
=> BC( BH + HC ) = AB2 + AC2
=> BC.BC = AB2 + AC2
=> BC2 = AB2 + AC2
Theo định lí Py - ta - go đảo
=> \(\Delta ABC\) vuông tại A (đpcm)
A H C C
a. Ta có: \(\Delta ABC\) vuông tại \(A\)
\(\Rightarrow\) \(S_{\Delta ABC}=\frac{1}{2}AH.BC=\frac{1}{2}AB.AC\)
\(\Rightarrow AH.BC=AB.AC\)
\(\Rightarrow AH=\frac{AB.AC}{BC}\)
\(\Rightarrow\)\(\frac{1}{AH}=\frac{BC}{AB.AC}\)
\(\Rightarrow\)\(\frac{1}{AH^2}=\frac{BC^2}{AB^2.AC^2}\) (1)
Lại có: \(BC^2=AB^2+AC^2\) (định lý Pi-ta-go)
(1) \(\Rightarrow\) \(\frac{1}{AH^2}=\frac{AB^2+AC^2}{AB^2+AC^2}\)
\(\Rightarrow\) \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\) (đpcm)
5 bạn à,mà bạn có p con thầy vương văn thanh ko