K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2021

ta có x2y + xy - x = xy (x+1)-x-1=xy(x+1) - (x+1) = (x+1)(xy-1)=5

17 tháng 9 2021
M=19.90 và n =31.60
15 tháng 1 2020

d. Câu hỏi của Black - Toán lớp 7 - Học toán với OnlineMath

17 tháng 9 2021

Ta có: x^2 – 2x + 1 = 6y^2 -2x + 2 

=> x^2 – 1 = 6y^2 => 6y^2 = (x-1).(x+1) chia hết cho 2 , do 6y^2 chia hết cho 2

Mặt khác x-1 + x +1 = 2x chia hết cho 2 => (x-1) và (x+1) cùng chẵn hoặc cùng lẻ. 

Vậy (x-1) và (x+1) cùng chẵn => (x-1) và (x+1) là hai số chẵn liên tiếp 

(x-1).(x+1) chia hết cho 8 => 6y^2 chia hết cho 8 => 3y^2 chia hết cho 4 => y^2 chia hết cho 4 => y chia hết cho 2 

y = 2 ( y là số nguyên tố) , tìm được x = 5

Có cách dễ hơn mà :>>

Ta có :

6y2 + 1 = x2

Vì 6y2 chẵn và 1 lẻ => x2 là số chính phương lẻ 

=> x2 chia 8 dư 1 => x - 1 ⋮ 8

Vì 6y2 + 1 = x2 => 6y2 = x2 - 1 ⋮ 8

=> 3y2 ⋮ 4 => y2 ⋮ 4 ( do ( 3 , 4 ) = 1 )

=> y ⋮ 2 mà y là số nguyên tố

=> y  = 2 => x = 5

x=1

y=0

học tốt

2 tháng 4 2018

[[3x-3]+2x(-1)2016]=3x-2017 mũ 0

<=>3x-3+2x+1=3x-1

<=>-3+2x+1=1

<=>-2+2x=1

<=>2x=2-1

<=>2x=1

<=>x=1/2

2,p=3 bạn nhé

2 tháng 4 2018

1. SAi đề!

2.

\(\text{Ta xét 3 trường hợp:}\)

\(Th1:p=2\text{ ta có:}\)

\(2^2+2^2=8\left(\text{Hợp số}\Rightarrow\text{loại}\right)\)

\(Th2:p=3\text{ ta có:}\)

\(2^3+3^2=17\left(\text{số nguyên tố}\Rightarrow\text{chọn}\right)\)

\(Th3:p>3\text{ ta có:}\)

\(\Rightarrow p\text{ ko chia hết cho 3 và p luôn lẻ}\left(\text{vì 2 là số chẵn duy nhất là số nguyên tố}\right)\)

\(\Rightarrow\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\text{, do đó }p^2-1=\left(p-1\right)\left(p+1\right)⋮3\left(1\right)}\)

\(\text{Vì p luôn lẻ nên }2^p+1\text{ luôn chia hết cho 3}\left(2\right)\)

\(\text{Từ (1) và (2) ta có:}\)

\(2^p+1+p^2-1=2^p+p^2⋮3\left(\text{ loại }\right)\)

\(\text{Vậy p=3 thỏa mãn đề bài}\)

27 tháng 7 2016

Bài 1 :Tổng của 3 số nguyên tố là 1012 môt số chẵn <=> có 1 số nguyên tố là số chẵn. Do đó số nguyên tố nhỏ nhất trong 3 số nguyên tố đó là 2.

Bài 2 : Biến đổi bt tương đương : (x^2-1)/2 =y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x>y và x phải là số lẽ. 
Từ đó đặt x=2k+1 (k nguyên dương); 
Biểu thức tương đương 2*k*(k+1)=y^2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

27 tháng 7 2016

Bài 1:Ta đổi 1012=2^2 X 11 X 23

Suy ra 1012=4 x 11 x 23

Số nhỏ nhất là 4

MK làm đc câu a thôi còn câu b tối mk làm cho nha

18 tháng 1 2016

tic cho mình hết âm nhé

13 tháng 2 2017

1) \(P=\frac{16x^4y^6}{9}.\frac{9x^2y^4}{4}=4x^6y^{10}\), đa thức bậc 16, hệ số là 4, biến là \(x^6y^{10}\)

Tại x=-1, y=1 thay vào ta được: P=4

2) \(f\left(x\right)=x^5+x^3-4x^2-2x+5\)

\(g\left(x\right)=x^5-x^4+2x^2-3x+1\)

\(h\left(x\right)=f\left(x\right)+g\left(x\right)=2x^5-x^4+x^3-2x^2-5x+6\)

3) \(B=\frac{x^2+y^2+2+5}{x^2+y^2+2}=1+\frac{5}{x^2+y^2+2}\le1+\frac{5}{0+0+2}=\frac{7}{2}\)

Do B LN <=> \(\frac{5}{x^2+y^2+2}\)LN <=> \(x^2+y^2+2\)NN <=> x=y=0

4) Ta thấy 51x+26y=2000

CHÚ Ý: VP chẵn => VT chẵn mà 26y chẵn nên => 51x chẵn => x=2

Thay vào ta tìm được y=73 ( thỏa mãn là số nguyên tố)

vậy x=2, y=73

5) Nhận xét: VP \(\ge\)0 => VT \(\ge\)0 => \(y^2\le25\Rightarrow y=0,1,2,3,4,5\)

Mà VP chẵn => y lẻ => y=1,3,5

Thay y=1,3,5 vào ta được y=5, x=2009 là thỏa mãn