![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}=\sqrt{\frac{1}{2}}\left(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\right)=\sqrt{\frac{1}{2}}\left(\sqrt{1+2\sqrt{3}+3}-\sqrt{3-2\sqrt{3}+1}\right)=\sqrt{\frac{1}{2}}\left(\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{\frac{1}{2}}\left(1+\sqrt{3}-\sqrt{3}+1\right)=\frac{1}{\sqrt{2}}.2=\sqrt{2}\)
A = \(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
\(=\frac{\sqrt{3+2.\sqrt{3}.1+1}-\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}\)
Mà \(\sqrt{3}+1>0;\sqrt{3}-1>\sqrt{1}-1=0\) nên:
\(A=\frac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
Đúng ko ta?:3
![](https://rs.olm.vn/images/avt/0.png?1311)
Lần sau bạn ghi đúng lớp với ạ!
1/ Đặt: \(\sqrt[3]{x+1}=a;\sqrt[3]{x+3}=b\Rightarrow\sqrt[3]{x+2}=\sqrt[3]{\frac{a^3+b^3}{2}}\)
Thay vào ta có: \(a+b+\sqrt[3]{\frac{a^3+b^3}{2}}=0\)
<=> \(a+b=-\sqrt[3]{\frac{a^3+b^3}{2}}\)
<=> \(a^3+b^3+3a^2b+3ab^2=-\frac{a^3+b^3}{2}\)
<=> \(a^3+b^3+2a^2b+2ab^2=0\)
<=> \(\left(a+b\right)\left(a^2-ab+b^2\right)+2ab\left(a+b\right)=0\)
<=> \(\left(a+b\right)\left(a^2+ab+b^2\right)=0\)
<=> \(\orbr{\begin{cases}a+b=0\\a^2+ab+b^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=-b\\\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}=0\end{cases}}\)
Với a = -b ta có: \(\sqrt[3]{x+1}=-\sqrt[3]{x+3}\)
<=> x + 1 = - x - 3 <=> 2x = - 4 <=> x = - 2
Với \(\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2=0\Leftrightarrow\left(a+\frac{b}{2}\right)^2=b^2=0\)
<=> a = b = 0 <=> \(\sqrt[3]{x+1}=\sqrt[3]{x+3}=0\) vô lí
Vậy x = -2 là nghiệm
Lần sau ghi đúng lớp!
Ta có: \(\left(ax+b\right)^3+\left(bx+a\right)^3=\left(ax+b+bx+a\right)^3-3\left(ax+b\right)\left(bx+a\right)\left(ax+b+bx+a\right)\)
\(=\left[\left(a+b\right)\left(x+1\right)\right]^3-3\left(ax+b\right)\left(bx+a\right)\left(a+b\right)\left(x+1\right)\)
Phương trình ban đầu :
<=> \(\left[\left(a+b\right)\left(x+1\right)\right]^3-3\left(ax+b\right)\left(bx+a\right)\left(a+b\right)\left(x+1\right)=\left(a+b\right)^3\left(x+1\right)^3\)
<=> \(\left(ax+b\right)\left(bx+a\right)\left(a+b\right)\left(x+1\right)=0\)(1)
TH1) Với a = 0; (1) <=> \(b\left(bx\right)b\left(x+1\right)=0\Leftrightarrow b^3x\left(x+1\right)=0\) (2)
- b= 0 ; (2) <=> 0 = 0 luôn đúng => phương trình (2) có vô số nghiệm => phương trình ban đầu có vô số nghiệm
- b khác 0 ; (2) <=> x ( x + 1) = 0 <=> x = 0 hoặc x = -1 => Phương trình ban đầu có 2 nghiệm x = 0 hoặc x = -1
TH2: Với a khác 0
- b = 0 ; (1) <=> \(a^3x\left(x+1\right)=0\Leftrightarrow x\left(x+1\right)=0\)<=> x = 0 hoặc x = - 1
=> phương trình ban đầu có 2 nghiệm x = 0 hoặc x = -1
- b khác 0 ; (1) <=> \(\left(ax+b\right)\left(bx+a\right)\left(x+1\right)=0\)
<=> x = -b/a hoặc x = -a/b hoặc x = - 1
=> Phương trình ban đầu có 3 nghiệm
Kết luận:...
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=x^2+2xy+y^2+16=\left(x+y\right)^2+16\ge16\forall x\)Vậy Min A = 16 khi \(x+y=0\Rightarrow x=-y\)
\(B=9x^2+6x+y^2+4x+16=\left(9x^2+6x+1\right)+\left(y^2+4x+4\right)+11\)
\(=\left(3x+1\right)^2+\left(y+2\right)^2+11\ge11\forall x\)
Vậy Min B = 11 khi \(\left\{{}\begin{matrix}3x+1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=-2\end{matrix}\right.\)
\(C=4x^2+4x+5y^2+5y=\left(4x^2+4x+1\right)+5\left(y^2+y+\dfrac{1}{4}\right)-\dfrac{9}{4}\)\(=\left(2x+1\right)^2+5\left(y+\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)
Vậy Min C = \(\dfrac{9}{4}\) khi \(\left\{{}\begin{matrix}2x+1=0\\y+\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có :
\(P\left(x^2\right)=x^2\left(x^2+1\right)P\left(x\right)\Rightarrow\frac{P\left(x^2\right)}{x^4\left(x^4-1\right)}=\frac{P\left(x\right)}{x^2\left(x^2-1\right)}\)
Đặt \(f\left(x\right)=\frac{P\left(x\right)}{x^2\left(x^2-1\right)}\Rightarrow f\left(x\right)=f\left(x^2\right)\forall x\Rightarrow f\left(x\right)=f\left(-x\right)=f\left(x^2\right)\)
\(\Rightarrow f\left(x\right)=f\left(\sqrt{x}\right)=...=f\left(\sqrt[2^n]{x}\right)=f\left(1\right)\) với mọi x>0
nên ta có f(x) là hàm hằng
hay \(\frac{P\left(x\right)}{x^2\left(x^2-1\right)}=c\text{ mà }P\left(2\right)=2\Rightarrow c=\frac{1}{6}\)
Vậy \(P\left(x\right)=\frac{1}{6}\left(x^2\left(x^2-1\right)\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
câu a sai đề nha
Nếu câu a đề đúng thì phương trình vô nghiệm nha
Theo mình đây là đề đúng
\(\left(2x^2+3x-1\right)^2-5\left(2x^2+3x-1\right)-24=0\)
Đặt a=\(\left(2x^2+3x-1\right)\)
Khi đó, phương trình trở thành
\(a^2-5a-24=0\)
\(\left(a-8\right)\left(a+3\right)=0\)
\(\left[{}\begin{matrix}a=8\\a=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-1=8\\2x^2+3x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-9=0\\2x^2+3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(x+3\right)\left(2x-3\right)=0\\2\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{8}=0\left(vl\right)\end{matrix}\right.\)\(\left[{}\begin{matrix}x=-3\\x=\dfrac{3}{2}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) \(M=x^2+x+1\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4};\forall x\)
Hay \(M\ge\frac{3}{4};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(MIN\)\(M=\frac{3}{4}\)\(\Leftrightarrow x=\frac{-1}{2}\)
b) \(N=3-2x-x^2\)
\(=-x^2-2x+3\)
\(=-\left(x^2+2x+1\right)+4\)
\(=-\left(x+1\right)^2+4\)
Vì \(-\left(x+1\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x+1\right)^2+4\le0+4;\forall x\)
Hay \(N\le4;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy MAX \(N=4\)\(\Leftrightarrow x=-1\)
Bài 2:
Vì a chia 3 dư 1 nên a có dạng \(3k+1\left(k\in N\right)\)
Vì b chia 3 dư 2 nên b có dạng \(3t+2\left(t\in N\right)\)
Ta có: \(ab=\left(3k+1\right)\left(3t+2\right)\)
\(=\left(3k+1\right).3t+\left(3k+1\right).2\)
\(=9kt+3t+6k+2\)
\(=3.\left(3kt+t+2k\right)+2\)chia 3 dư 2 .
\(\)
1a) Ta có: M = x2 + x + 1 = (x2 + x + 1/4) + 3/4 = (x + 1/2)2 + 3/4
Ta luôn có: (x + 1/2)2 \(\ge\)0 \(\forall\)x
=> (x + 1/2)2 + 3/4 \(\ge\)3/4 \(\forall\)x
Dấu "=" xảy ra khi : x + 1/2 = 0 <=> x = -1/2
Vậy Mmin = 3/4 tại x = -1/2
b) Ta có: N = 3 - 2x - x2 = -(x2 + 2x + 1) + 4 = -(x + 1)2 + 4
Ta luôn có: -(x + 1)2 \(\le\)0 \(\forall\)x
=> -(x + 1)2 + 4 \(\le\)4 \(\forall\)x
Dấu "=" xảy ra khi : x + 1 = 0 <=> x = -1
Vậy Nmax = 4 tại x = -1
![](https://rs.olm.vn/images/avt/0.png?1311)
Âu Mai Gớt :)) Bài này là cả giờ sinh hoạt của t.
Đặt: \(L=1.2.3+2.3.4+100.101.102\)
\(4L=1.2.3.4+2.3.4.\left(5-1\right)+...+100.101.102.\left(103-99\right)\)
\(4L=1.2.3.4+2.3.4.5-1.2.3.4+...+100.101.102.103-99.100.101.102\)
\(4L=100.101.102.103\Leftrightarrow L=\dfrac{100.101.102.103}{4}\)(1)
Mặt khác( Kiểu người 2 mặt ý) :
\(L=\left(2-1\right).2.\left(2+1\right)+\left(3-1\right).3.\left(3+1\right)+...+\left(101-1\right).101.\left(101+1\right)\)
\(L=2\left(2^2-1\right)+3\left(3^2-1\right)+...+101\left(101^2-1\right)\)
\(L=2^3-2+3^3-3+...+101^3-101\)
\(L=\left(1^3+2^3+3^3+...+100^3\right)-\left(1+2+3+...+100\right)+101^3-101\)(2)
Từ (1) và (2) ta có: \(\left(1^3+2^3+3^3+...+100^3\right)-\left(1+2+3+...+100\right)+101^3-101=\dfrac{100.101.102.103}{4}\)
\(\Rightarrow A-\dfrac{100.101}{2}+101^3-101=25.101.102.103\)
\(\Rightarrow A=25.101.102.103+101-101^3+\dfrac{100.101}{2}\)
\(A=25502500\)
\(\)Mà: \(B=1+2+3+...+100=\dfrac{100.101}{2}=5050\)
\(\Rightarrow\dfrac{A}{B}=5050\Leftrightarrow A⋮B\)
ta có điều phải chứng minh.
P/S: Có thể nhận thấy rằng: \(A=B^2\).Công thức tổng quát:
\(1^3+2^3+...+l^3=\left(1+2+3+...+l\right)^2\)