Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3, A=(x-3)^2+(x-11)^2
\(\Rightarrow\)(X^2-3^2)+(x^2-11^2)
\(\Rightarrow\)(X^2-9)+(X^2-121)
Ta có :X^2 \(\ge\)0 và X^2 \(\ge\)0
\(\Rightarrow\)X^2 - 9 \(\le\)-9 và X^2- 121 \(\le\)-121
\(\Rightarrow\)(X^2-9)+(X^2-121)\(\le\)-130
Dấu = xảy ra khi : X=0
Vậy : Min A = -130 khi x=0
Mình mới lớp 7 sai thì thôi nhé
Tìm giá trị nhỏ nhất của biểu thức:
\(A=4x^2+3y^2-6xy+6x-12y+20\)
Mình cần gấp, các bạn giúp mình nhé.
\(A=4x^2+3y^2-6xy+6x-12y+20\)
\(A=3\left(x^2-2xy+y^2\right)+6x-12y+x^2+20\)
\(A=3\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]+\left(x^2-6x+9\right)-1\)
\(A=3\left(x-y+2\right)^2+\left(x-3\right)^2-1\ge-1\)
Dấu bằng xảy ra tại x=3;y=5
Bài 1:
a: \(M=x^2-10x+3\)
\(=x^2-10x+25-22\)
\(=\left(x^2-10x+25\right)-22\)
\(=\left(x-5\right)^2-22>=-22\forall x\)
Dấu '=' xảy ra khi x-5=0
=>x=5
b: \(N=x^2-x+2\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi x-1/2=0
=>x=1/2
c: \(P=3x^2-12x\)
\(=3\left(x^2-4x\right)\)
\(=3\left(x^2-4x+4-4\right)\)
\(=3\left(x-2\right)^2-12>=-12\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
\(A=10x^2+6xy+y^2-4x+3\)
\(A=9x^2+6xy+y^2+x^2-4x+4-1\)
\(A=\left(3x+y\right)^2+\left(x-2\right)^2-1\)
Có: \(\left(3x+y\right)^2+\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(3x+y\right)^2+\left(x-2\right)^2-1\ge-1\)
Dấu = xảy ra khi: \(\left(3x+y\right)^2+\left(x-2\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(3x+y\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}3x+y=0\\x-2=0\end{cases}}\Rightarrow\hept{\begin{cases}3x+y=0\\x=2\end{cases}}\Rightarrow\hept{\begin{cases}6+y=0\\x=2\end{cases}}\Rightarrow\hept{\begin{cases}y=-6\\x=2\end{cases}}\)
Vậy: \(Min_A=-1\) tại \(\hept{\begin{cases}y=-6\\x=2\end{cases}}\)