![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\left(đk:x\ge2;y\ge3;z\ge5\right)\)
\(< =>\left(x-2\right)-2\sqrt{x-2}+1+\left(y-3\right)-4\sqrt{y-3}+4+\left(z-5\right)-6\sqrt{z-5}+9=0\)
\(< =>\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Do \(\left(\sqrt{x-2}-1\right)^2\ge0;\left(\sqrt{y-3}-2\right)^2\ge0;\left(\sqrt{z-5}-3\right)^2\ge0\)
Cộng theo vế ta được \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2\ge0\)
Mà \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Dấu "=" xảy ra khi và chỉ khi x = 3 ; y = 7 ; z = 14 ( tmđk )
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(-7xy\sqrt{\frac{16}{xy}}\)
\(-7xy\frac{4\sqrt{xy}}{xy}\)
\(-28\sqrt{xy}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3
\(A=\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\)
\(=\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\cdot\sqrt{3+\sqrt{5}}\cdot\sqrt{2}\left(\sqrt{5}-1\right)\)
\(=2\cdot\sqrt{6+2\sqrt{5}}\cdot\left(\sqrt{5}-1\right)=2\cdot\sqrt{\left(\sqrt{5}+1\right)^2}\cdot\left(\sqrt{5}-1\right)\)
\(=2\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)=2\cdot4=8\left(đpcm\right)\)
\(B=\sqrt{2}\left(\sqrt{3}+1\right)\left(\sqrt{2-\sqrt{3}}\right)=\left(\sqrt{3}+1\right)\sqrt{4-2\sqrt{3}}\)
\(=\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3}-1\right)^2}=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=2\left(đpcm\right)\)
Bài 4
\(P=\frac{3\sqrt{10}+\sqrt{20}-3\sqrt{6}-\sqrt{12}}{\sqrt{5}-\sqrt{3}}=\frac{\sqrt{10}\left(\sqrt{2}+1\right)-\sqrt{6}\left(\sqrt{2}+1\right)}{\sqrt{5}-\sqrt{3}}\)
\(=\frac{\sqrt{2}\left(\sqrt{2}+1\right)\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}=2+\sqrt{2}\)
\(Q=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+2\sqrt{2}+2+2}{\sqrt{2}+\sqrt{3}+2}\)
\(=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\sqrt{2}+\sqrt{3}+2}=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+2}=1+\sqrt{2}\)